
 
 
 
 
 
 
 
 
 

   P. J. ŠAFÁRIK UNIVERSITY 
   FACULTY OF SCIENCE 

   INSTITUTE OF MATHEMATICS 
    Jesenná 5, 040 01 Košice, Slovakia 

  
 

 
 
 
 

K. Cechlárová, P. Eirinakis, T. Fleiner,  
D. Magos, I. Mourtos and E. Potpinková  

 
Pareto optimality in many-to-many 

matching problems 
 
 
 
 
 
 
 

IM Preprint, series A, No. 4/2013 
December 2013 

 



Pareto optimality in many-to-many matching
problems
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and MTA-ELTE Egerváry Research Group, Hungary

email: fleiner@cs.bme.hu

4Department of Informatics, Technological Educational Institute of Athens,

Ag. Spyridonos Str., 12210 Egaleo, Greece

email:dmagos@teiath.gr

Abstract. Consider a many-to-many matching market that involves two finite
disjoint sets, a set of applicants A and a set of courses C. Each applicant has
preferences on the different sets of courses she can attend, while each course has a
quota of applicants that it can admit. In this paper, we examine Pareto optimal
matchings (briefly POM) in the context of such markets, that can also incorpo-
rate additional constraints, e.g., each course bearing some cost and each applicant
having an available budget. We provide necessary and sufficient conditions for a
many-to-many matching to be Pareto optimal and show that checking whether a
given matching is Pareto optimal requires O(|A|2 · |C|2) time. Moreover, we pro-
vide a generalized version of serial dictatorship, which can be used to obtain any
many-to-many POM. We also study the problems of finding a minimum cardinal-
ity and a maximum cardinality POM. We show that the former is NP-complete
even in one-to-one markets with the preference list of each applicant containing at
most two entries. For the latter problem we show that, although it is polynomi-
ally solvable in the special one-to-one case, it is NP-complete for many-to-many
markets.
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1 Introduction

A university runs a leisure centre that offers a variety of activities, e.g., sports,
language courses, etc. (we shall call all of them courses), to students and em-
ployees (we shall call all of them applicants). Each applicant can attend one or
more courses and, because of various technical constraints, each course can only
accept a restricted number of applicants. Furthermore, certain additional rules
may apply. For example, each applicant, if accepted, may have to pay some fee
as a contribution to cover the running costs of the course. On the other hand,
each applicant may have a budget that she is able to allocate to these courses
that she cannot exceed (hereafter, we refer to applicants as females). Two simple
problems that naturally arise in this many-to-many matching context are those
of assigning each applicant to all the courses she desires and of assigning each
applicant to at least one course. Both cases reduce to well-known combinatorial
optimization problems, namely the maximum flow problem and the maximum
cardinality bipartite matching problem respectively, see e.g. [6].

In real life however, it is usually the case that the applicants do not desire
equally all the courses they apply for; rather they have certain preferences over
them. The problem that arises when taking these preferences into account will
be called the Course Allocation problem (cap). In the cap setting, various opti-
mization criteria for the obtained assignments can be formulated. Here, we shall
concentrate on Pareto optimality.

Pareto optimality, sometimes called Pareto efficiency, is a well established
notion in economic science. It is the primary welfare goal in many real matching
markets, especially educational markets assigning pupils to schools (see [3, 4] for
assigning students to public schools in several US school districts, [7] for college
admission in Turkey) or students to campus housing [8], [10]. A detailed account
of recent developments regarding Pareto optimality in the context of matching
problems under preferences has appeared in [9].

The special case of one-to-one cap is often called the House Allocation prob-
lem, as it arises in the context of assigning tenants to houses [1], [2]. A detailed
study of computational aspects of the House Allocation problem was provided in
[5]. The authors gave necessary and sufficient conditions for a matching to be
Pareto optimal and showed that these conditions can be checked in polynomial
time. They also established that any Pareto optimal matching (POM) can be
obtained by the well-known serial dictatorship mechanism [1] and proposed an
efficient algorithm to find a POM of maximum cardinality. Analogous results
have been established in [13] for the many-to-one (capacitated) House Alloca-
tion problem, i.e., the variant where each house can accommodate more than one
tenant.

Regarding intractability results, it has been established that finding a Pareto
optimal one-to-one matching of minimum cardinality is NP-complete even in the
one-to-one case [5]. A related recent paper [12] deals with the computational
complexity of serial dictatorship. The authors prove that in this mechanism, the
problem of deciding whether there exists an order of proposals such that a given
agent receives a given object is NP-complete, while the problem asking whether
in each order of proposals a given agent receives a given object can be decided in
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polynomial time.

In this paper, we completely characterize Pareto optimal matchings in the
many-to-many setting and show that deciding whether a given matching is Pareto
optimal requires polynomial time. Consequently, our work concludes the research
of [5, 13] on these issues for two-sided markets as it treats the general case. We
also generalize the serial dictatorship mechanism, thus providing a procedure that
can be used to obtain any many-to-many POM. This result is important also
because, unlike in the one-to-one case, serial dictatorship alone cannot guarantee
that all Pareto optimal matchings will be generated [5]. Further, we show that
finding a minimum cardinality POM is NP-complete, even when considering the
simplified one-to-one case with the preference list of each applicant containing at
most two entries, thus strengthening the result given in [5]. Moreover, we prove
that the maximum cardinality POM problem is also NP-complete, although it is
polynomially solvable in the (capacitated) House Allocation case [5], [9], [13].

2 Definitions

An instance of the Course Allocation problem involves a set A of n applicants
and a set C of m courses. Each course c ∈ C has a quota q(c). A subset A′ ⊆ A
of applicants is feasible for a course c if |A′| ≤ q(c). Each applicant a has a
preference list P (a), a strictly ordered list of a subset of courses. These courses
are acceptable for a and we shall write c �a c

′ if applicant a prefers course c to
course c′. Moreover, there is a family Fa of subsets of courses associated with
each applicant a. We say that the sets of courses belonging to Fa are feasible
for a, while all other sets are infeasible. For each applicant a, we suppose that
Fa is downward closed, i.e. if C ′′ ⊆ C ′ and C ′ ∈ Fa, then C ′′ ∈ Fa too. Note
that the House Allocation problem is obtained if q(c) = 1 for each c ∈ C and
all the feasible sets are just singletons, containing the acceptable courses for each
applicant.

As discussed in the Introduction, additional rules may apply in this setting.
Consider, for instance, the case in which each course has an attendance cost
and each applicant may have a budget. The corresponding framework can be
obtained as follows. Suppose that each course c has a nonnegative price p(c) and
each applicant a has a budget b(a). Let p(C ′) denote the total price of all courses
in the subset C ′, i.e. p(C ′) =

∑
c∈C′ p(c). Then Fa = {C ′ ⊆ P (a); p(C ′) ≤ b(a)}.

It is easy to see that Fa defined in this way is indeed downward closed. In this
paper, we shall call this special case the price-budget cap.

Other more complicated situations also fit in our model. For example, besides
the price, each course might also have some time requirements and applicants
might be restricted not only in the available budget, but also in time they are
able to allocate to the courses. In another case, courses may be of different types
(sports, languages, music, etc) and the applicants may wish to take at most one
courses of each type. Any such case can be handled by appropriately defining Fa,
i.e., the feasible set of courses of any applicant a, as long as Fa remains downward
closed.

An assignment M is a subset of A × C. The set of applicants assigned to a
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course c will be denoted by M(c) = {a ∈ A; (a, c) ∈ M} and similarly, the set of
courses assigned to an applicant a is M(a) = {c ∈ C; (a, c) ∈M}. An assignment
M is a matching if M(a) is feasible for each applicant a and M(c) is feasible for
each course c ∈ C.

An applicant a ∈ A is assigned if M(a) 6= ∅, otherwise she is unassigned. A
course c ∈ C is open if M(c) 6= ∅, otherwise it is closed. An applicant a and a
course c are undersubscribed if M(a) is not an inclusionwise maximal element of
Fa and |M(c)| < q(c), respectively. If |M(c)| = q(c), we say that c is full.

Applicant a prefers matching M to matching M ′ if she prefers M(a) to M ′(a).
We suppose that applicants compare the sets of courses lexicographically. This
means that applicant a orders the acceptable courses according to her prefer-
ence list from the most preferred to the least preferred one and compares the
characteristic vectors χa of feasible sets with the entries arranged in this order.
More precisely, if C ′ and C ′′ are two feasible sets of courses, then C ′ �a C

′′ if
χa(C

′) >lex χa(C
′′), that is, the most preferred element of symmetric difference

C ′4C ′′ = (C ′ \ C ′′) ∪ (C ′′ \ C ′) belongs to C ′. We write C ′ �a C ′′ if either
C ′ �a C

′′ or C ′ = C ′′. Notice that the ordering of sets of courses generated by a
strict preference order P (a) is also strict.

Example 1 Let us consider the price-budget cap instance given in Table 1.

applicant preference budget course price quota
list

a1 c1, c2, c3 2 c1 2 2
a2 c2, c1 3 c2 1 1
a3 c3, c1 2 c3 1 1

Table 1: Price-budget cap instance for Example 1.

The feasible sets of applicant a1 in the order of her preference are

{c1} �a1 {c2, c3} �a1 {c2} �a1 {c3} �a1 ∅,

for applicants a2 and a3, their orderings are

{c2, c1} �a2 {c2} �a2 {c1} �a2 ∅ and {c3} �a3 {c1} �a3 ∅, respectively.

Notice that this ordering is compatible with the assumption of the following
greedy behaviour of applicants: if an applicant can freely pick her favourite as-
signment from some set of available courses, then she goes down her preference
list and adds the next course if and only if the set of courses comprised of those
chosen so far plus the new course is still feasible.

We say that a matching M ′ dominates a matching M (M ′ � M) if at least
one applicant prefers M ′ to M and no applicant prefers M to M ′.

Proposition 1 The relation ‘�’ forms a partial order over the set of matchings.

A Pareto optimal matching is a matching that is not dominated by any other
matching. Thanks to Proposition 1 and finiteness of the set of all matchings, a
Pareto optimal matching exists for each instance of cap.
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3 Characterization of POM

Abraham et al. [5] characterized Pareto optimal one-to-one matchings as those
that are maximal, trade-in-free and coalition-free. We generalize their result be-
low.

Let M be any matching and c ∈ P (a)\M(a). Let us denote DM(a, c) = {c′ ∈
M(a); c �a c

′}. Intuitively, DM(a, c) is the set of courses applicant a is happy
to drop from her current assignment M(a) in exchange for getting course c, as,
according to the lexicographic ordering, agent a prefers the set (M(a)\DM(a, c))∪
{c} to M(a).

Let us say that a sequence of applicant-course pairs

K = ((a0, c0), (a1, c1), . . . , (ar−1, cr−1))

is a coalition with respect to a matching M if for i = 0, 1, . . . , r− 1 we have (here
and later, when dealing with coalitions, we always understand the indices modulo
r):

a) ci ∈M(ai), ci+1 6∈M(ai);

b) ai prefers ci+1 to ci;

c) (M(ai)\DM(ai, ci+1)) ∪ {ci+1} ∈ Fai .

The matching

M ′ = M/K = (M\{(ai, c); c ∈ DM(ai, ci+1); 0 ≤ i ≤ r−1})∪{(ai, ci+1); 0 ≤ i ≤ r−1}

is said to be obtained from M by satisfying coalition K.

Definition 1 Let M be a matching. We say that M is

(i) maximal, if there exists no applicant a ∈ A and course c /∈M(a) such that

M(a) ∪ {c} ∈ Fa and |M(c)|+ 1 ≤ q(c);

(ii) trade-in-free, if there exists no applicant a ∈ A and course c /∈ M(a) such
that

(M(a)\DM(a, c)) ∪ {c} ∈ Fa and |M(c)|+ 1 ≤ q(c);

(iii) coalition-free, if there exists no coalition with respect to M .

Example 2 Consider again the price-budget cap instance given in Table 1 and
a matching

M1 = {(a1, c2), (a1, c3), (a2, c1), (a3, c1)}.
As all the courses are full, M1 is maximal as well as trade-in-free. However, it is
not coalition-free, as it admits two coalitions, namely K1 = ((a1, c2), (a2, c1)) and
K2 = ((a1, c3), (a3, c1)). The matching

M2 = M1/K1 = {(a1, c1), (a2, c2), (a3, c1)}
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is not trade-in-free, as applicant a3 will be happy to drop course c1 and get course
c3 while this course has a free quota. The obtained matching

M3 = {(a1, c1), (a2, c2), (a3, c3)}

is not maximal, as the pair (a2, c1) can be added and we finally arrive at a POM

M4 = {(a1, c1), (a2, c2), (a2, c1), (a3, c3)}.

Theorem 1 A matching in an instance of cap is Pareto optimal if and only if
it is maximal, trade-in-free and coalition-free.

Proof. It is easy to see that if M is a POM, then it is maximal, trade-in-free and
coalition-free.

To show the opposite direction, assume that a matching M is not Pareto
optimal but it is maximal, trade-in-free and coalition-free. Since M is not Pareto
optimal, there is some matching M ′ and an applicant a0 such that M ′(a0) �a0

M(a0) and M ′(a) �a M(a) for all a ∈ A. Let c1 be a0’s most preferred course
in the symmetric difference M ′(a0)∆M(a0). As, M ′(a0) �a0 M(a0), we have
c1 ∈M ′(a0). Further, since M is maximal,

(a1) |M(c1)|+ 1 > q(c1) or (a2) M(a0) ∪ {c1} /∈ Fa0 .

M being trade-in-free implies that

(b1) |M(c1)|+ 1 > q(c1) or (b2) (M(a0) ∪ {c1})\DM(a0, c1) /∈ Fa0 .

Now distinguish two cases.
Case 1. |M(c1)| + 1 ≤ q(c1). In this case, both (a2) and (b2) must hold. The
assumption that the families of feasible sets are downward closed implies that
(b2) is stronger, so it must be that (M(a0) ∪ {c1})\DM(a0, c1) /∈ Fa0 . However,
(M(a0) ∪ {c1})\DM(a0, c1) ⊂M ′(a0), a contradiction.
Case 2. |M(c1)|+ 1 > q(c1). In this case, since a0 ∈ M ′(c1)\M(c1), there exists
a1 ∈ M(c1)\M ′(c1). Moreover, for a1 we have M ′(a1) �a1 M(a1): the reason
is that we have assumed that M ′ dominates M , hence M ′(a1) �a1 M(a1), while
c1 ∈M(a1)\M ′(a1) means that M(a1) 6= M ′(a1).

We can now proceed as above with a1 in the role of a0 thus either yielding a
contradiction (Case 1) or eventually revealing a coalition (since the applicants’ set
is finite) (Case 2), which in turn contradicts our assumption that M is coalition-
free.

Testing Pareto optimality of a given matching can be performed by testing
each of the three properties separately. However, we construct a special digraph,
called the extended envy graph, that enables testing all the three conditions simul-
taneously. (Compare [5], where a simpler envy graph was used only to test the
existence of coalitions.) Moreover, this digraph will be helpful in a generalization
of serial dictatorship.

For convenience, let us define, for a matching M , an applicant a and courses
c′ ∈ P (a)\M(a) and c ∈M(a):

FM(a, c, c′) = (M(a) ∪ {c′}) \{c′′ ∈M(a); c �a c
′′}

to be the set of courses assigned to a if she acquires course c′ and drops from
M(a) course c and all the courses she prefers less than c.
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Definition 2 The extended envy graph G(M) = (VG(M), EG(M)) associated with
a matching M is a digraph with VG(M) = A ∪ C ∪ {ac : (a, c) ∈M} and EG(M) =
E1

G(M) ∪ E2
G(M) ∪ E3

G(M) where

• E1
G(M) =

⋃
a∈A {(c, a) : c ∈ P (a)\M(a), |M(c)| < q(c)},

• E2
G(M) =

⋃
a∈A {(a, ac) : c ∈M(a) and no c′ ∈M(a)\{c} satisfies c �a c

′}
⋃⋃

a∈A {(ac, ac′)) : {c, c′} ⊆ M(a), c′ �a c and no c′′ ∈ M(a)\{c, c′} satisfies
c′ �a c

′′ �a c},

• E3
G(M) =

⋃
a∈A {(a, c) : c ∈ P (a)\M(a),M(a)∪ {c} ∈ Fa, |M(c)| < q(c)}

⋃⋃
a∈A {(ac, c′) : c′ ∈ P (a)\M(a), c′ �a c, FM(a, c, c′) ∈ Fa, |M(c′)| < q(c′)}

⋃⋃
a∈A {(ac, a′c′) : c′ ∈ (P (a)\M(a)) ∩M(a′), c′ �a c, FM(a, c, c′) ∈ Fa}.

That is, G(M) has one vertex per applicant, one per course and one per pair
in M (matching vertices). The arc set EG(M) has three types of arcs, namely the
availability arcs E1

G(M) that indicate that a course c is available but not matched

to applicant a; the matching arcs E2
G(M) that form vertex-disjoint paths, each

containing |M(a)| + 1 vertices in increasing order with respect to P (a) (in this
context, vertex a corresponds to applicant a being unassigned); and the envy arcs
E3

G(M) that establish that applicant a envies some course not contained in M(a).

Envy arcs are, in turn, of three types, namely arcs (a, c) showing that a wishes and
can (in terms of feasibility) to add c to her courses; arcs (ac, c′) indicating that
a wishes and can trade-in c′; and arcs (ac, a′c′) indicating that a wishes and can
acquire c′ matched to some other applicant a′ by dropping from M(a) the courses
that are not better than c. Notice that, under the reasonable assumption that
any course is acceptable and individually feasible by some applicant, c ∈ VG(M)

has no incident arcs if and only if |M(c)| = q(c).
Extended envy graphs for matchings from Example 2 are given in Figure 1.

Theorem 2 M is a POM if and only if G(M) is acyclic.

Proof. If M is not a POM, Theorem 1 yields that M is not maximal or not trade-
in-free or not coalition-free. If M is not maximal, Definition 2 implies that G(M)
contains arcs (c, a) ∈ E1

G(M) and (a, c) ∈ E3
G(M) for some a ∈ A and c ∈ C, hence a

cycle. If M is not trade-in-free, again Definition 2 yields that there is an applicant
a and courses c, c′ such that c′ �a c and G(M) contains arc (c′, a) ∈ E1

G(M), a path

from a to ac, arcs in E2
G(M) and the arc (ac, c′) ∈ E3

G(M), hence a cycle. If there

is a coalition K = ((a0, c0), . . . , (ar−1, cr−1)) in M, Definition 2 implies that arcs
(aici, ai+1ci+1) , 0 ≤ i ≤ r − 1 are in E3

G(M), hence G(M) contains a cycle.

To prove the converse, assume that G(M) contains a cycle C.
Case 1. C contains an availability arc (c, a) ∈ E1

G(M).

Case 1a. (a, c) ∈ E3
G(M) yields M is not maximal, since by Definition 2, c ∈

P (a)\M(a), |M(c)| < q(c) and M(a) ∪ {c} ∈ Fa.
Case 1b. If (a′, c) ∈ E3

G(M) for some a′ 6= a, then Definition 2 implies that

(c, a′) ∈ E1
G(M) too. So this case reduces to Case 1a.
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Figure 1: Extended envy graphs for matchings M1, M2, M3, M4 of Example 2

Case 1c. E3
G(M) contains no arc of the form (a′, c). Then the only incoming arc

to vertex c can be an envy arc from some vertex a′c′ such that FM(a′, c′, c) ∈ Fa′

(also notice that, in that case, (c, a′) ∈ E1
G(M)). Thus applicant a′ would trade-in

c, i.e., M is not trade-in-free.
Case 2. C contains no availability arc. Then it contains no vertices in A ∪
C. Hence, Definition 2 yields that C can only be a sequence of sub-paths, each
containing some (possibly an empty set of) matching arcs plus a single envy arc of
type 3. Formally, C comprises sub-paths Pi, i ∈ {0, . . . , r−1}, where each Pi starts
at vertex aici, then proceeds using only matching arcs to vertex aic

′
i and ends with

an envy arc (aic
′
i, ai+1ci+1) ; where by definition ci+1 �ai c

′
i (recall that indices

are taken modulo r, hence ai+1 = a0 for i = r − 1). If applicants ai are pairwise
different, observe that ((a0, c0), (a1, c1), . . . , (ar−1, cr−1)) is a coalition. Otherwise,
there exists j 6= i such that ai = aj. Let us denote ai = aj by a and suppose
w.l.o.g. that cj �a ci. As the indices on C are taken modulo r, we can suppose
i < j. Then we replace the part of C between the vertices aici and ajc

′
j simply by

the path consisting of the matching arcs leading from aici to ajc
′
j (remember that

ai and aj are both equal to a and c′j �a cj �a ci, so this path exists). If necessary,
a similar shortcut can be applied several times, eventually obtaining a cycle with
all applicants mutually different, hence giving a coalition.

Corollary 1 Checking Pareto optimality of a matching can be performed in O(|A|2·
|C|2) steps.

Proof. Follows from Theorem 2 and the fact that a cycle can be found in
O(|VG(M)| + |EG(M)|) steps; |VG(M)| is O(|A| · |C|) and |EG(M)| is O(|A|2 · |C|2),
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applicant preference budget course price quota
list

a1 c1, c2 2 c1 1 2
a2 c3, c4 2 c2 1 2
a3 c3, c1 1 c3 1 1
a4 c2, c4 1 c4 1 1
a5 c1, c4 1

Table 2: Price-budget cap instance for Example 3.

i.e., |EG(M)| is determined by the fact that O(|A| · |C|) vertices of the ‘ac’ type
have O(|A| · |C|) incident envy arcs.

Let us remark here that the generalized envy graph could also be used for
finding a POM. Simply start by any matching M , construct G(M) and if G(M)
is not acyclic, improve it according to any existing cycle. For the new matching
construct again its generalized envy graph etc., until an acyclic graph is obtained.
It is easy to see that this procedure will eventually lead to a POM, but it is
difficult to derive a bound on the number of matchings constructed. In the next
section, we propose a much faster approach.

4 Pareto optimality and serial dictatorship

Recall that serial dictatorship (henceforth abbreviated by SD) is the following
algorithm: applicants are considered in a certain order. Each applicant on her
turn chooses the most preferred set of courses among those that are still available.
Serial dictatorship or its variants are used in real labour or educational markets,
see Example 4.3 of [11] or [7].

It is easy to see that the following assertion is true.

Proposition 2 Each matching obtained by SD is Pareto optimal.

Abraham et al. [5] showed that in the one-to-one case the converse is also true:
each Pareto optimal matching can be obtained by SD in a suitable order. We
show that in the many-to-many case the situation changes.

Example 3 Let us now consider the instance of the price-budget cap given in
Table 2. In this instance, at least four applicants are matched in each Pareto
optimal matching M . First, note that q(c2) = 2, while only a1 and a4 apply to
c2 and both have enough budget, so both are assigned to it and M(a4) = {c2}.
Further, exactly one of a2, a3 is assigned to c3, otherwise the trade-in-free prop-
erty is violated. Hence, to achieve a POM with only three matched applicants,
there are only two possibilities. It is easy to see that in both cases pair (a5, c1)
violates the trade-in-free property (case 1: a2 and a5 unassigned; case 2: a3 and
a5 unassigned).

Further, it is easy to construct orders of proposals, producing Pareto optimal
matchings with four and five matched applicants; see Table 3 for examples of such
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a1, a2, a3, a4, a5 a5, a4, a3, a2, a1
M(a1) {c1, c2} {c1, c2}
M(a2) {c3, c4} {c4}
M(a3) {c1} {c3}
M(a4) {c2} {c2}
M(a5) ∅ {c1}

Table 3: POMs with four and five matched applicants and the orders in SD to
obtain them

POMs together with the orders in which the SD mechanism considers the choices
of each applicant.

Now we show that in this example, not all Pareto optimal matchings can be
obtained by serial dictatorship in the many-to-many case. Consider the matching
M given by

M(a1) = {c1, c2}, M(a2) = {c3}, M(a3) = {c1}, M(a4) = {c2}, M(a5) = {c4}.

It is easy to see that M is a POM. Suppose that M was obtained by SD. Then,
since only applicants a1 and a4 are assigned to their first choices, one of them
must have been the first one to make the choice.

Suppose that a1 was the first. Then neither of the applicants a2, a3 and a5
could be in the second position, since they would have chosen {c3, c4}, {c3} and
{c1} respectively, as these are their first choices and they were still available after
the move of a1. Hence the second one to make the choice was a4. After the choice
of a4, courses c3 and c4 are still available, and since they are among the first
choices of a3 and a2, it can be the turn for neither of them. So the third one to
choose must be a5. But c1, the first choice for a5, is still available, so neither
applicant a5 can be in the third position.

Suppose that a4 was the first one to make the choice. Again, a1 must follow
immediately and we arrive at exactly the same situation as before, when no player
could make her choice as the third one.

Consider the following mechanism, called here Generalized Serial Dictatorship
(GSD). Initially, all courses are closed and all applicants are labelled as active.
At each round, let S(a) denote the set of courses already assigned to applicant
a and A′ ⊆ A be the subset of active applicants. Each GSD round amounts to
arbitrarily selecting an applicant a ∈ A′ who receives her most preferable course
c that is undersubscribed and satisfies S(a) ∪ {c} ∈ Fa. If no such course exists,
a is removed from A′. The GSD terminates once A′ = ∅.

Intuitively, the GSD is a sequence a1, a2, . . . , ar of applicants, in which repe-
titions may occur, such that applicant ai selects a single course ci.

Lemma 1 The output of a GSD is a POM.

Proof. The output of a GSD is a matching M, since quotas of courses and
feasibility sets of applicants are checked at each GSD round. By Theorem 1, if M
is not a POM, it is not maximal or not trade-in-free or not coalition-free. If M is
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not maximal, there is a course c that is undersubscribed and an applicant a such
that M(a)∪ {c} ∈ Fa. Then, applicant a is active in GSD terms, a contradiction
to the fact that GSD has terminated. If M is not trade-in-free, there is an
undersubscribed course c and an applicant a such that (M(a) ∪ {c}) \DM(a, c) ∈
Fa; but then, applicant a prefers c to any c′ ∈ DM(a, c), a contradiction to the
rule that at each GSD round an applicant selects her most preferable course that
has an empty slot.

If there is a coalition K = ((a0, c0), . . . , (ar−1, cr−1)) in M, let ai, i ∈ {0, . . . , r−
1} be the applicant at the earliest among the GSD rounds in which the pairs in
K were matched. This implies that ai selected ci instead of the more preferred
ci+1, which, by definition of ai was selected by ai+1 at a subsequent round ; the
only reason for that to occur would be that ci+1 had no empty slot, which in turns
contradicts that ci+1 was available for ai+1 at a subsequent round.

The converse is also true.

Theorem 3 Any POM is obtainable by the GSD in a suitable order.

Proof. If M is a POM, then G(M) is acyclic by Theorem 2 thus admitting a
topological ordering τ . Let us denote by (a1, c1), (a2, c2), . . . , (a|M |, c|M |) the pairs
matched in M ordered according to the inverse of τ restricted to matching vertices.
For brevity, let us denote by GSD(τ) the realization of GSD with the order of
applicants a1, a2, . . . , a|M |. We show that GSD(τ) outputs exactly M , i.e., in step
i, applicant ai will choose exactly ci, for i = 1, 2, . . . , |M |.

To get a contradiction, suppose that GSD(τ) outputs some other POM, de-
noted by M ′. Let j be the first step in GSD(τ), where applicant aj chooses
something different from cj. Let us denote by Sj(a) the set of courses that appli-
cant a has obtained under GSD(τ) up to (but not including) step j. Notice that
Sj(a) ⊆M(a) for each applicant a ∈ A. Let us consider two cases in turn.

Case 1. Applicant aj did not choose cj because this course was not available in
step j. This means |{a ∈ A; cj ∈ Sj(a)}| = q(cj). As aj ∈M(cj) too, this implies
|M(cj)| ≥ q(cj) + 1, a contradiction.

Case 2. Applicant aj chose a course c∗ ∈ P (aj)\Sj(aj) such that c∗ �aj c
j. Notice

that in this case necessarily c∗ ∈ P (aj)\M(aj). Let M(aj) = {c1, c2, . . . , ck} and
suppose that the courses are written here in the order of decreasing preference of
aj and that cj = c`. Notice that G(M) contains the path P joining the vertices
aj, ajck, . . . , a

jc`, . . . , a
jc1 in this order.

Case 2a. Course c∗ has a free slot in M . This means that G(M) contains in
addition to the arcs of path P arcs (c∗, aj) and (ajc`, c

∗), thus a cycle. This is a
contradiction to Theorem 2.

Case 2b. Course c∗ is full in M . This means that there are applicants a′1, a
′
2, . . . ,

a′q(c∗) who are matched to c∗ in M . Due to the definition of FM(aj, cj, c∗), digraph

G(M) contains arcs (ajcj, a′ic
∗) for each i = 1, 2, . . . , q(c∗). This means that in

GSD(τ) all the applicants a′1, a
′
2, . . . , a

′
q(c∗) had chosen c∗ before step j and hence

c∗ was not available for aj when making her choice. We arrived at a contradiction
again.
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Hence to obtain a POM, one can run the GSD with an arbitrary order of
applicants. After an applicant has made her choice, she will either leave the
market (if she cannot choose any available course to remain feasible) or enter the
queue again. Let us suppose that each applicant can make her choice in constant
time. Then, if a POM M is obtained, the number of rounds will be O(|M |). In
general, the computational complexity of GSD can be bounded by O(|A| · |C|), or
more precisely, by O(L), where L is the number of acceptable pairs.

5 Minimum and maximum Pareto optimal

matchings

Let us denote by min-pom and max-pom the problems to decide, given an in-
stance I of the many-to-many Pareto optimal matching problem and an integer
k, whether I admits a Pareto optimal matching M of cardinality at most k and
at least k, respectively. NP-completeness of the former problem has been proved
in Theorem 2 of [5] and in Theorem 6.6. in [9] for the one-to-one case. We give
here a slightly stronger result by proving the NP-completeness even for the case
when the preference list of each applicant is restricted to contain at most two
entries. By contrast, max-pom is polynomially solvable in the one-to-one case
and we prove that it is also NP-complete here.

Theorem 4 min-pom is NP-complete even in the one-to-one case and when the
preference list of each applicant contains at most two entries.

Proof. By Corollary 1, min-pom belongs to NP. We shall prove the NP-completeness
by a polynomial transformation from vertex cover. Let G = (V,E) be a graph
and k an integer. We define an instance I of pom as follows. For each vertex
v ∈ V we define a vertex course cv and for each edge e ∈ E an edge course ce.
Further, for each edge e = {u, v} ∈ E there are two applicants eu and ev with
preference lists

P (eu) : ce, cu; P (ev) : ce, cv.

Let the quota of each course be 1 and the feasible sets of courses of each applicant
be singletons.

Now we show that G has a vertex cover of size at most k if and only if I admits
a Pareto optimal matching M such that |M | ≤ |E|+ k.

Let W ⊆ V be a vertex cover of size ` ≤ k. We construct a matching M of
cardinality at most |E| + ` as follows. For each edge e = {u, v} pick a vertex
in W incident to e, say u ∈ W . Assign ev to ce in M and denote the set of
these applicants by A1. This means that the applicants not assigned so far belong
to {eu, e ∈ E;u ∈ W}. These applicants cannot be matched with edge courses
(since all courses have quota 1 and are already matched with some applicant in
A1) and hence desire only vertex courses associated with vertices in W . Moreover,
to each such course we can assign at most one acceptable applicant. Denote these
applicants by A2. Clearly, |M | ≤ |E|+ ` and it remains to show that M is Pareto
optimal. This is easy, as M can be obtained by a serial dictatorship if we first let
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applicants in A1 make their choices (in an arbitrary order), then applicants in A2

(in an arbitrary order) and then the rest of applicants.
Conversely, let M be a POM such that |M | ≤ |E| + k. Clearly, each edge

course is full, otherwise M would not be maximal or would not be trade-in-free.
Moreover, at most k further applicants are assigned to vertex courses. Let us
denote the set of full vertex courses by W . To show that W corresponds to a
vertex cover in G, let us suppose that for some edge e = {u, v} both cu and cv are
closed. As one of the applicants eu and ev is unassigned, this is a contradiction
with maximality of M and this concludes the proof.

The following results is in a sharp contrast with with the polynomial solvability
of max-pom in the one-to-one case. Abraham et al. [5] gave an O(

√
|A|L) algo-

rithm that was extended to the one-to-many case (Capacitated House Allocation
problem) by Sng [13], see also [9], Chapter 6.

Theorem 5 max-pom is NP-complete.

Proof. By Corollary 1, max-pom belongs to NP. To show NP-completeness, we
again give a polynomial transformation from vertex cover. Let G = (V,E) be
a graph and k be an integer. Denote |V | by n and |E| by m. Define an instance
I of pom as follows. For each vertex v ∈ V there is an applicant av. For each
edge e ∈ E there is a course ce with price 1. Moreover, there are n − k special
courses z1, z2, . . . , zn−k, each of price n. The quota of each course is 1 and the
budget of each applicant is n. The preference list of applicant av contains first all
the special courses ordered z1, z2, . . . , zn−k and then all the courses corresponding
to the edges incident to v in any strict order.

We show that G has a vertex cover of size ` ≤ k if and only if I has a POM
with cardinality n+m− k.

Let W = {w1, w2, . . . , w`}, ` ≤ k be a vertex cover in G. For each edge e ∈ E
take a vertex w ∈ W that is incident with e (if e is covered by two vertices in W ,
choose the one with the smaller index in W ) and assign in M applicant aw to ce.
The number of filled places is so far equal to m. Of the remaining n− ` ≥ n− k
applicants assign exactly n−k of them to special courses arbitrarily, one applicant
to each course. As all the courses are full, the size of the obtained matching |M |
is n+m− k. To see that M is Pareto optimal it suffices to realize that it can be
obtained by serial dictatorship in the order M(z1),M(z2), . . . ,M(zn−k), w1, . . . , w`

and the rest of the applicants in an arbitrary order.
Conversely, let M be any POM in I of size n+m− k. As M is maximal and

trade-in-free, all special courses are full. Applicants assigned to them cannot be
assigned to any other course because of the budget constraints. This means that
the remaining n− (n− k) = k applicants are assigned all the m courses ce, e ∈ E,
and so these applicants correspond to a vertex cover of cardinality k.

Notice that the hardness results apply also when one wants to maximize or
minimize the number of open courses. The latter might also have an economic
interpretation: if each open course bears some fixed cost, minimizing their number
means minimizing these costs.

By contrast, a POM that maximizes the number of assigned applicants can be
found in polynomial time by the following procedure. First, given a many-to-many
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instance I derive an associated one-to-one instance J by leaving for each applicant
only feasible sets of cardinality one and making as many clones of each course as
is its quota. Find a maximum cardinality POM in J by the algorithm described
in [5]. We know that in the one-to-one case each POM can be obtained by a
serial dictatorship in a suitable order, again [5] provides a polynomial algorithm
for finding this order. Then, after merging the clones of individual courses back,
continue in the GSD with the used ordering of applicants as the starting point
of the GSD. Since the number of assigned applicants will never be decreased, we
can find a POM that maximizes the number of assigned applicants.
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