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Abstract

Let the cake be represented by the unit interval of reals, with players
having private valuations expressed by nonatomic probability measures.
The aim is to find a cake division which assigns to each player one con-
tiguous piece (a simple division) in such a way that the value each player
receives (by her own measure) is the same for all players. It is known
that such divisions always exist, however, we show that there is no finite
algorithm to find them already for three players. Therefore we propose an
algorithm that for any given ε > 0 finds, in a finite number of steps, a
simple division such that the values assigned to players differ by at most
ε > 0.
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1 Introduction

In this paper we deal with the problem of ’fairly’ dividing a certain resource, called
the cake, between n people (players). The cake is represented by the interval [0, 1]
of reals. Players have different opinions about the values of different parts of the
cake. We shall suppose that these valuations are private information of players.
Although people have been trying to divide things ’fairly’ for a very long

time, a rigorous mathematical theory of fair division was established only after
the second world war [12]. We shall concentrate on equitable divisions, i.e. such
that the values of pieces assigned to all players are equal (according to their
valuations). In the literature, other concepts of fairness are considered, too. In
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a proportional division (sometimes called simple fair [11]) each player receives
at least 1/n part of the cake according to her valuation, in an envy-free division
no player thinks that she would be better off with somebody else’s piece and
an exact division assigns pieces such that everybody thinks that everybody’s
piece has value exactly 1/n. It is known that in general, these properties are
not equivalent, but exactness implies all the other properties (see e.g. [3] and
[11], where also some other notions are defined and the relations between them
explored).
Equitability is not so popular as proportionality or envy-freeness. Existence of

exact divisions was proved by Dubins and Spanier in [8] (however, the obtained
pieces could be any members of a σ algebra on [0, 1]) and by Alon [1], who
showed that in the worst case for n players as many as n(n− 1) cut points may
be necessary. Such divisions may be very impractical in the real life. Imagine
researchers who share a very expensive apparatus needed for their experiments.
If they had to come into the lab and leave it several times a day, they would
perhaps rather give up such a kind of fairness. Therefore we are interested in
cake divisions where each player receives a contiguous piece. Such cake divisions
will be called simple in this paper. They are specified by their cutpoints and
the order of players. Simple equitable divisions were studied by Mawet, Pereira
and Petit [9] for piecewise constant utility functions and by Aumann and Dombb
[2], who used the compactness of the set of all simple divisions. Cechlárová,
Doboš and Pillárová [7] proved the existence of simple equitable divisions for any
number of players in any order.
In general, it is easier to prove the existence of a division fulfilling a certain

property than to find such a division, see a nice review in [11], Chapter 7. In
recent years, several papers studied what can be achieved by a finite algorithm.
A finite cake cutting algorithm, as specified by [11], [16] or [14], uses a finite
number of requests of two types issued to players:

• ’For a given value α ∈ [0, 1], determine the smallest point x such that your
value of the interval [0, x] is equal to α!’ (cutting query)

• ’What is your value of the given cake piece?’ (evaluation query)

With a little thought it is clear that the beginning of the interval in the first type
of request need not be fixed at 0. We shall also use the third kind of request:

• ’For a given value α ∈ [0, 1], determine the biggest point x such that your
value of the interval [x, 1] is equal to α!’ (modified cutting query)

However, what is important, a finite algorithm does not require the knowledge
of complete value functions of players. Also the famous moving-knife algorithms
[13], [4] cannot be considered finite. There are even results proving that no finite
algorithm can exist for finding divisions of a certain type. Robertson and Webb
[10] proved that there exists no finite algorithm that produces an exact division



K. Cechlárová, E. Pillárová: On the computability of equitable divisions 3

for two players. Stromquist [14] showed that neither an envy-free simple division
among three players can be obtained by a finite algorithm.
Hence algorithms that produce a ’nearly fair’ division are called for. Robert-

son and Webb [10], [11] provided a finite algorithm that, given a small ε > 0 and
a set of real numbers α1, · · · , αn with

∑n
i=1 αi = 1, constructs a division such

that for each player i, the value of her piece differs from αi by at most ε. The
main idea of the algorithm is the following. Player 1 cuts the cake into pieces
which she considers to be smaller than k each, where k is a small number deter-
mined by ε and n; in the case of two players k may be set to ε/2. Then player 2
can reduce any of the pieces (if necessary) so that each new piece will be smaller
than k according to her, etc. An ε-exact division is then produced by a suitable
assignment of the obtained pieces to players. A disadvantage of this algorithm is
that many small pieces arise and those assigned to one player can be scattered
irregularly over the whole cake.
Another ε-exact division for two players can be obtained using the approach

described by Simmons and Su in [15]. They considered the so-called consensus-
halving, i.e. a division of an object into two portions so that each of n people
believes the portions are equal. (If n = 2, an exact division is obtained.) Simmons
and Su showed, using methods from combinatorial topology, namely theorems of
Borsuk-Ulam and Tucker, that such a division exists, at most n cuts are needed
and this number of cuts is the best possible. Moreover, they showed how a
constructive proof of Tuckers lemma yields a finite algorithm for locating an
ε-approximate solution that uses the minimal number of cuts.
In this paper we show that no finite algorithm can find a simple equitable

division for three players (and give a hint to a proof for an arbitrary number of
players). We obtain this results by a modification of Stromquist’s work [14], by
constructing stiff measure systems. A finite algorithm for an ε-equitable simple
division for two players was proposed by Cechlárová and Pillárová [6]. Here we
construct a finite algorithm that finds a near equitable simple division for any
number of players.

2 Definitions and basic properties of divisions

We will consider the set of players N = {1, 2, ..., n}. The cake is represented by
the interval [0, 1]. In this work, the only allowable portions – pieces are intervals
[p, q], 0 ≤ p ≤ q ≤ 1. A cutpoint of two neighbouring pieces cannot belong to
both of them, but since in our model the value of a piece is not influenced by a
single point, we shall represent all pieces as closed intervals.
We shall suppose that each player i is endowed with a nonatomic probability

measure Ui on the cake. Such a measure can be represented by the distribution
function Fi(x) = Ui(0, x), so that the measure of each interval [p, q] is equal
to Fi(q) − Fi(p). The properties of the measure imply that the function Fi is
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nonnegative, nondecreasing and continuous on [0,1] and Fi(0) = 0, Fi(1) = 1. If
the distribution function Fi has a density fi, then

Ui(p, q) =
∫ q

p

fi(t)dt.

(Note that the terminology is perhaps not very intuitive in the context of cake
cutting, however, the properties of distribution functions and their densities are
so well-known that we shall stick at it.)
A cake division D is a partition of the cake into n disjoint pieces; the piece

assigned to player i in a division D will be denoted by Di. The various fairness
criteria are formulated in the following definition (see also [3, 11] for other notions
and relations between them).

Definition 1 A cake division D = (D1, D2, . . . , Dn) is said to be
a) proportional, if Ui(Di) ≥ 1/n for each i ∈ N
b) exact, if Ui(Dj) = 1/n for each i, j ∈ N
c) envy-free, if Ui(Di) ≥ Ui(Dj) for each i, j ∈ N
d) equitable, if Ui(Di) = Uj(Dj) for each i, j ∈ N .

Simple cake divisions are specified by their cutpoints and the order of players.

Definition 2 A simple cake division is a pair D = (d, ϕ), where d is an (n− 1)-
tuple (x1, x2, . . . , xn−1) of cutpoints with 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ 1, and
ϕ : N → N is a permutation of N .

For technical reasons, we set x0 = 0 and xn = 1. Permutation ϕ in the division D
means that player i is assigned the interval [xj−1, xj] if ϕ(j) = i. In what follows,
we abbreviate the phrase equitable simple division by ESD. The common value
that each player receives in an ESD D will be denoted by E(D).
Cechlárová, Doboš and Pillárová [7] proved the following assertions:

Theorem 1 For any number of players n there exists an ESD for each players’
order. If the probability density function of each player is everywhere strictly
positive then in the given players’ order the ESD is unique.

The following assertion is mainly technical, but it has important consequences.

Lemma 1 Let D′ be any simple cake division for n players with players’ order
π such that player i receives a piece with value Ui(D′

i). Then any ESD D with
players’ order π fulfills

min{Uj(D
′
j), j = 1, 2, . . . , n} ≤ E(D)) ≤ max{Uj(D

′
j), j = 1, 2, . . . , n}.
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Proof. The first inequality was proved in [7]; we give here an analogic proof for
the second one.
Let us suppose, without loss of generality, that π is the identity permutation.

Denote the cutpoints of the division D′ by (d1, d2, . . . , dn−1) and the cutpoints of
the equitable cake division D in the players’ order π by (e1, e2, . . . , en−1). Since
D is equitable, it suffices to show that Ui(Di) ≤ Ui(D′

i) for some i.
We distinguish three cases:

(a) e1 ≤ d1. Then [0, e1] ⊆ [0, d1] and so U1(D1) ≤ U1(D′
1).

(b) If there exists k such that ej > dj for each j = 1, 2, ..., k − 1 and ek ≤ dk

then [ek−1, ek] ⊂ [dk−1, dk]. Hence Uk(Dk) ≤ Uk(D′
k).

(c) ej > dj for each j = 1, 2, . . . , n− 1. Then [en−1, 1] ⊂ [dn−1, 1] and therefore
Un(Dn) ≤ Un(D′

n).

We shall formulate two corollaries of Lemma 1. The first one claims that
taking an ESD in a players’ order in which a proportional simple division exists
ensures that the ESD is also proportional. The second one says that even in the
case when there are several different ESDs in one players’ order, the utility that
they assign to players is the same.

Corollary 1 If D′ is a proportional simple division and D an ESD with the same
players’ order then D is also proportional.

Corollary 2 If D and D′ are two ESDs with the same players’ order then
E(D) = E(D′).

3 A finite algoritm does not exist

Although equitable simple divisions are sure to exist, they are not so simple to
find. We give an independent proof of the nonexistence of a finite algorithm
capable of finding a proportional ESD. Our proof resembles the one given by
Stromquist [14] for the envy-free simple division for three players.
A stiff measure system (SMS for short) for three players L, M, R (for Left,

Middle, Right) is a triple of probability densities uL, uM , uR, defined by four
parameters s, t, x, y, where 0 < s < 1/6, 2s + t = 1 and 0 < x < y < 1. The
probability densities uL, uM , uR are everywhere positive and such that the values
of intervals correspond to Table 1.
The basic properties of a SMS are described in the following Lemma.

Lemma 2 If the three players L, M, R have a SMS with parameters s, t, x, y then
the only proportional ESD has the players’ order (L, M, R) and cuts in points x
and y.
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[0, x] [x, y] [y, 1]
UL t s s
UM s t s
UR s s t

Table 1: Values in a stiff measure system

Proof. First we show that the only possible players’ order in a proportional
simple division is (L, M, R).
Should player R be first, then she must get an interval [0, z] such that z ≥ y.

However, the value of the remaining piece is smaller than 1/3 both for M as well
as for L. If M were first, then she must get an interval [0, z] such that z > x.
Then player L could not get a piece with value at least 1/3.
Hence we have that in any proportional simple division the first player must

be player L. If playerM were last, then her piece must be of the form [z, 1] where
z < y. Then the piece that remains for player R would have a value smaller than
1/3.
Therefore the only possible players’ order is (L, M, R). Clearly, the cutpoints

x1 = x and x2 = y give everybody a piece of value t. Now Theorem 1 is sufficient
for the uniqueness of the proportional ESD in this order.

The following lemma is an analogy of Lemma 3 of [14]. Its interpretation
is following: even if one player knows that the three probability densities form
a SMS and she knows her probability density in full and the densities of other
players outside the neighbourhoods of suspected cutpoints, she alone is not able
to determine the parameters of the SMS. We formulate the assertion for player
L, but analogic results hold for players M and R.

Lemma 3 Let uL, uM , uR form a SMS with parameters s, t, x, y. Let η > 0 be
arbitrary, δ > 0 be such that 2/3 + δ < t < 1 − δ, and let t̂ 6= t be sufficiently
close to t. Then there exists a SMS ûL, ûM , ûR with parameters ŝ, t̂, x̂, ŷ for some
ŝ, x̂, ŷ such that

(i) ûL(z) = uL(z) for all z ∈ [0, 1],
(ii) ûj(z) = uj(z) for all j 6= L and all z that are outside the η-neighbourhoods
of x and y,

(iii) x̂ 6= x, ŷ 6= y, but both are within η-neighbourhoods of x and y, respectively;

(iv) 2/3 + δ < t̂ < 1− δ

Proof. Our proof will do the following: The choice of t̂ (we will see later, how
close to t this should be) will uniquelly determine the value of ŝ and the new
cutpoints x̂ and ŷ, so as the probability density uL (since it has not changed) will
fulfill the requirements of the first row of Table 1 for t, s, x, y replaced by t̂, ŝ, x̂
and ŷ.
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Suppose that t̂ < t (the case t̂ > t can be treated similarly). This implies
ŝ > s and x̂ < x, ŷ < y. Given η > 0, we recall that UL(0, x) is a nondecreasing
continuous function of x, so t̂ can be chosen in such a way that it fulfills (iv) and
x̂, ŷ fulfill (iii).
Now it is sufficient to show that there exist probability densities ûM and ûR,

identical with the probability densities uM and uR outside the η-neighbourhoods
of x and y such that together with uL they form a SMS with parameters ŝ, t̂, x̂
and ŷ. Namely, for player M we have that the following relations have to be
fulfilled:

ÛM(0, x̂) = ŝ, ÛM(x̂, ŷ) = t̂, ÛM(ŷ, 1) = ŝ. (1)

Let us show that ûM can be made constant in the intervals

(x− η, x̂), (x̂, x+ η), (y − η, ŷ), (ŷ, y + η), (2)

so that the measure ÛM of player M fulfills row 2 of Table 1 (with the new
parameters). Let us denote the values of these constants by m1, m2, m3 (notice
thatm2 is the same for both middle intervals). Taking into account that ûM = uM

outside the η-neighbourhoods of x and y, we have the following constraints:

UM(0, x− η) +m1(x̂− (x− η)) = ŝ
UM(x+ η, y − η) +m2((x+ η − x̂) + (ŷ − (y − η))) = t̂

UM(y + η, 1) +m3(y + η − ŷ) = ŝ.

 (3)

To ensure that m1, m2, m3 can be positive, it is necessary and sufficient to have

UM(0, x− η) < ŝ, UM(x+ η, y − η) < t̂, UM(y + η, 1) < ŝ. (4)

The first and the third conditions in (4) hold trivially because UM(0, x − η) <
s < ŝ and UM(y + η, 1) < s < ŝ. For the second one let us realize that UM(x +
η, y − η) < t, so it suffices to choose t̂ in the interval [UM(x+ η, y − η), t] (this is
the second condition showing how close t̂ should be to t).
Analogically, for player R we get the conditions

ÛR(0, x̂) = ŝ, ÛR(x̂, ŷ) = ŝ, ÛR(ŷ, 1) = t̂. (5)

We shall make ûR constant in the intervals (2) so that the measure of player R
fulfills row 3 of Table 1 (with the new parameters). Let us denote the values of
these constants by r1, r2, r3 (again, r2 is the same for both middle intervals). We
have the following constraints:

UR(0, x− η) + r1(x̂− (x− η)) = ŝ
UR(x+ η, y − η) + r2((x+ η − x̂) + (ŷ − (y − η))) = ŝ

UR(y + η, 1) + r3(y + η − ŷ) = t̂.

 (6)

r1 and r3 will be positive since

UR(0, x− η) < s < ŝ, UR(x+ η, y − η) < s < ŝ. (7)
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To ensure that UR(y+η, 1) < t̂ it suffices to choose t̂ so that it lies in the interval
[UR(y + η, 1), t] (the last condition for t̂ to be close to t).
Hence the new probability densities will be everywhere positive and they will

fulfil the requirements of the lemma.

Theorem 2 There is no finite algorithm for finding a proportional ESD for three
players. This assertion remains true even for three players whose probability
densities form a SMS.

Proof. Suppose, on the contrary, that there is such an algorithm. Suppose that
the probability densities uL, uM , uR of the three players L, M, R form a SMS.
We will show that after any finite number of steps, the algorithm is not able to
determine precisely the parameters of the SMS, in particular, to determine the
cutpoints of the unique ESD.
At the beginning, suppose that the parameters of the SMS uL, uM , uR are

s, t, x, y. Suppose that the algorithm has already performed K steps, where K
is any positive integer. If no mark has been made at x or y, the algorithm
proceeds to step K + 1. On the other hand, if the algorithm made a mark at
say x, Theorem 3 implies that all the marks made so far could have as well been
obtained for another SMS ûL, ûM , ûR with parameters ŝ, t̂, x̂, ŷ: it suffices to take
η such that no mark is within the η-neighbourhood of x and y. So the algorithm
has not found the correct cutpoints and it has to continue by another step.

The technique used in this section can easily be extended to any number of
players n ≥ 3. Let s be any positive number such that s < 1/n(n − 1). We
define t = 1 − (n − 1)s. Obviously, t > (n − 1)/n > 1/n. There will be points
x1, x2, . . . , xn−1 and the players’ measure will fulfil

Ui(xj−1, xj) =

{
s if j 6= i
t if j = i

It can be shown that the only players’ order ensuring proportionality is (1, 2, . . . , n)
– it suffices to realize that for any i < n, if a player j > i were in position i,
then her piece should end in a point y > xj, leaving not enough for the rest of
players. In this order there is again a unique ESD with cutpoints x1, x2, . . . , xn−1
that cannot be found in a finite number of steps.

4 The near equitable algorithm

The algorithm that we propose in this section finds a simple cake division such
that the difference between the values of pieces assigned to players is not higher
than a predetermined value ε. We call this property of a cake division ε-equitablity:
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Definition 3 Let D = (d, ϕ) be a simple cake division and ε > 0 a real number.
D is called ε-equitable if

|Uϕ(j)(xj−1, xj)− Uϕ(k)(xk−1, xk)| ≤ ε for each j, k ∈ N .

The algorithm consists of three phases:
Phase 1. Ordering
Phase 2. Addition
Phase 3. Termination

4.1 Ordering

The purpose of Phase 1 is to find a players’ order, in which a proportional simple
division exists. There are several finite algorithms to find a proportional simple
division for n players, we describe here a simplified version of the procedure
proposed in Chapter 4 of [11].
First, each player i is asked to mark a point yi such that Ui(0, yi) = 1/n. The

player, let us call her i1, whose mark is most to the left is chosen. (In case when
the left-most marks correspond to several players, any one of them can be taken.)
The mark made by player i1 is denoted by x1. Player i1 is assigned the piece
[0, x1] and she drops out of the game. x1 is taken as the new beginning of the
cake and the marks made so far are erased. Each player i of the remaining n− 1
players is asked to make a new mark at a point yi such that Ui(x1, yi) = 1/(n−1).
Again, the player, say i2, with the left-most mark, denoted now by x2 is taken
etc. until just one player remains, who is assigned the rest of the cake. The
obtained players’ order is (i1, i2, . . . , in) and it is easy to see that in the simple
division with the cuts in points x1, x2, . . . , xn−1 each player receives a piece that
she considers to have a value at least 1/n.
Thanks to Corollaries 1 and 2 we know that any ESD taken with the players’

order determined in Phase 1 will give each player a piece with the same value
E ≥ 1/n.

4.2 Addition

In Phase 2 the algorithm actually tries to approximate the value E by con-
structing its binary expansion. Recall that a binary expansion of a real number
E ∈ [0, 1] is its expression in the form

E =
∞∑

k=0

ck.1/2
k (8)
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where ck ∈ {0, 1} for each k.1 The jth partial binary expansion is

bEcj =
j∑

k=0

ck.1/2
k (9)

Here we describe in detail just the case with 3 players and later we generalize these
ideas to an arbitrary number of players. Rename the players L, M, R according
to the order obtained in Phase 1.
Phase 2 works in iterations. The piece of player L begins in point 0, the pieces

of players M and R immediately follow. As the algorithm proceeds, the values
of pieces for players L and M are kept mutually equal, and the right player R is
ensured the value that is not smaller.
In iteration j we want to decide whether cj = 1 or cj = 0 on assumption that

the (j−1)st partial binary expansion bEcj−1 has so far been correctly determined.
In other words, all three players already have for sure a piece with value bEcj−1
and we want to know whether their pieces can be enlarged by 1/2j. We do it by
issuing three requests:

1. To player L: Tell the smallest x1 such that UL(0, x1) = bEcj−1 + 1/2j.

2. To player M : Tell the smallest x2 such that UM(x1, x2) = bEcj−1 + 1/2j.

3. To player R: Is UR(x2, 1) ≥ bEcj−1 + 1/2j?

(Notice that it may happen that UM(x1, 1) < bEcj−1 + 1/2j. In that case the
player is instructed to output x2 = 1.) We say that iteration j is successful if the
following condition holds:

UR(x2, 1) ≥ bEcj−1 + 1/2
j (10)

otherwise the iteration is said to be unsuccessful. Connection between the suc-
cess in an iteration and the corresponding digit in the binary expansion of E is
described in the following Lemma.

Lemma 4 For each j, the value of digit cj in the binary expansion of the equitable
value E for the players’ order (L, M, R) determined by the rule

cj =

{
1 if iteration j is successful
0 otherwise

(11)

is correct.

1Notice that some reals have two different binary expansions. Namely the two expansions
ck and c′k are such that there exists j with cj = 1 and ck = 0 for each k > j and c′j = 0 and
c′k = 1 for all k > j (compare e.g. [5]). Due to the organisation of the Addition phase, we will
always obtain an expansion of the first type.
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Proof. We proceed by induction on j. Assume that the coefficients c0, c1, . . . , cj−1
in the binary expansion of E correspond to the rule stated in the Lemma.
Suppose that iteration j is successful, i.e. condition (10) is fulfilled. Then the

simple division with cutpoints x1 and x2 fulfils

UL(0, x1) = UM(x1, x2) = bEcj−1 + 1/2
j, UR(x2, 1) ≥ bEcj−1 + 1/2

j. (12)

Thanks to Lemma 1 the equitable value E for the players’ order (L, M, R) fulfils
E ≥ bEcj−1+1/2j and so coefficient cj has been correctly determined to be equal
to 1.
Conversely, suppose that iteration j was unsuccessful, but still the value E

of an ESD with the players’ order (L, M, R) fulfils E ≥ bEcj−1 + 1/2j. Let
us denote the cutpoints of one such division by x′1 and x′2. It is clear that the
leftmost point x1 such that UL(0, x1) = bEcj−1 + 1/2j must fulfil x1 ≤ x′1 and
the leftmost point x2 such that UM(x1, x2) = bEcj−1 + 1/2j fulfils x2 ≤ x′2.
Since UR(x′2, 1) ≥ bEcj−1 + 1/2j, condition (10) is also fulfilled, and we get a
contradiction with the assumption that iteration j was unsuccessful.

The algorithm may terminate any time with an equitable division if player R
says that UR(x2, 1) = bEcj−1 + 1/2j. If this does not occur sufficiently early, we
can proceed to Termination phase as soon as 1/2j < ε.

4.3 Termination

Let us summarize the situation immediately after iteration j finished and before
the algorithm enters the Termination phase. The marks are made at points
x1 and x2 and the values of pieces fulfil relations (12). The purpose of the
Termination phase is to decide how to divide the cake to ensure that the values
of final assignments do not differ by more than ε from each other and also from
the equitable value E (notice that if the cuts were made at x1 and x2, player R
might get too much).
A suitable division will be obtained by following the steps of the decision tree

described in Figure 1. For brevity, we shall introduce the notation

bEc+j = bEcj + 1/2
j.

It is easy to see that (recall that we have the binary expansion of the first type)

bEcj ≤ E < bEc+j . (13)

We shall also use the symbol bEc∗j to denote an unknown (arbitrary) number in
the interval [bEcj, bEc+j ].

Theorem 3 If Termination is entered after iteration j such that 1/2j < ε then
the values of the pieces assigned to players (by each one’s own measure) differ by
at most ε.
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1. Ask player R to tell the biggest point y2 such that UR(y2, 1) = bEc+j .
2. If y2 ≤ x2 then cut the cake in points x1 and x2.
3. (Obtained values: bEcj , bEcj and bEc∗j .)
4. If y2 > x2 then ask player M to tell the biggest y1 such that UM (y1, y2) = bEc+j .
5 If y1 < x1 then cut the cake in points x1 and y2.
6. (Obtained values: bEcj , bEc∗j and bEc

+
j .)

7. otherwise cut the cake in points y1 and y2
8. (Obtained values: bEc∗j , bEc

+
j and bEc

+
j .)

Figure 1: Algorithm Termination

Proof. It can be easily seen that all the possibilities when trying to assign to
players in the order (L, M, R) pieces with value bEc+j have been checked. Let us
review in detail what happens in which case.
Condition y2 ≤ x2 means that the value of piece [x2, 1] for player R is between

bEcj and bEc+j . If y2 > x2 we cut in y2 to give player R a piece with value bEc+j
and now try to give player M a piece with value bEc+j that finishes in y2. This is
impossible if y1 < x1, so cutting in points x1 and y2 gives the players the pieces
with values as stated in line 6 of Figure 1. Finally, if y1 ≥ x1, we know (thanks
to Lemma 1) that giving to both M and R a piece with value bEc+j (by cutting
in y1 and y2), player L cannot obtain also so much. So making the first cutpoint
in y1 ensures for player L a value between bEcj and bEc+j .
As we entered the Termination phase after iteration j such that 1/2j < ε,

we see that ε-equitability is ensured.

5 Generalization to any number of players

We described the Addition and the Termination phase of our ε-equitable algo-
rithm in detail for three players. Now we explain how these ideas can be used for
an arbitrary number of players.

5.1 Addition

In iteration j we successively issue the requests (recall that x0 = 0):

For player i = 1, 2, . . . , n− 1:
Tell the smallest point xi such that Ui(xi−1, xi) = bEcj−1 + 1/2j

For player n: Is it true that Un(xn−1, 1) ≥ bEcj−1 + 1/2j?

Figure 2: Termination for n players

(If anybody thinks that Ui(xi−1, 1) < bEcj−1 + 1/2j, she says xi = 1.)
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1. For i = n downto 2 do
2. begin
3 Ask player i: tell the biggest point yi−1 such that Ui(yi−1, yi) = bEc+j .
4. If yi−1 ≤ xi−1 then then cut the cake in x1, . . . , xi−1, yi, . . . , yn−1 and STOP
5. end
6. Cut the cake in points y1, y2, . . . , yn−1

Figure 3: Termination for n players

Again we say that iteration j is successful if the following conditions holds:

Un(xn−1, 1) ≥ bEcj−1 + 1/2
j; (14)

otherwise the iteration is said to be unsuccessful. Connection between the success
in an iteration and the corresponding digit in the binary expansion of E is the
same as that in Lemma 4; we state the assertion without proof.

Lemma 5 For each j, the value of digit cj in the binary expansion of the equitable
value E for the players’ order determined in the Ordering phase of the algorithm
by the rule (11) is correct.

5.2 Termination

Termination phase can be entered (unless the algorithm ends earlier with an
equitable division) as soon as 1/2j < ε. Its purpose is to ensure that nobody will
get too much. We first describe intuitively what this phase does. In the course
of this phase we will have left players 1, 2, . . . , i − 1 who are all temporarily
assigned pieces of the value exactly bEcj separated by temporary cutpoints x0 =
0, x1, . . . , xi−1. Right players i + 1, . . . , n have definitive pieces with value bEc+j
and their cupoints yi, yi+1, . . . , yn−1, yn = 1 are definitive. Player i competes with
her neighbours for piece X = [xi−1, yi] whose value is not yet known, we only
know that its value for player i is not smaller than bEcj. At first, all players are
left players, piece X touches the right-endpoint of the cake and we ask player n to
tell the right-most cutpoint yn−1 such that the piece [yn−1, 1] has the value bEc+j .
If yn−1 ≤ xn−1, we know that the value of the piece [xn−1, 1] for player n is not
bigger than bEc+j , so we can cut in points x1, . . . , xn−1 to achieve ε-eqitability.
If yn−1 > xn−1 then point yn−1 is made a new cupoint, player n is made a right
player, the new piece X is [xn−2, yn−1] and we ask player n− 1 to tell the right-
most cutpoint yn−2 such that the piece [yn−2, yn−1] has the value bEc+j . Moving
this way the piece X to the left, at latest player 1 will think that the value of
piece X is smaller than bEc+j (however, remember that not smaller than bEcj)
and we can cut. A formal description of this algorithm is given in Figure 3. The
correctness of this procedure can easily be verified.
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6 Conclusion

In this paper we proved that in spite of the positive existence results, it is impos-
sible to find an equitable division for n ≥ 3 players, if everybody is to receive one
contiguous piece. On the other hand, we proposed a simple algorithm that finds
a division such that the values assigned to players (by everybody’s own measure)
differ by no more than a predetermined small value.
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