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Orthogonal decompositions in growth

curve models∗

Ivan ŽEŽULA and Daniel KLEIN

Abstract. The article shows the advantage of orthogonal decompositions in
the standard and extended growth curve models. Using this, distribution of
estimators of ρ and σ2 in the standard GCM with uniform correlation structure
is derived. Also, equivalence of Hu and von Rosen conditions in the extended
GCM under mild conditions is shown.

1 The standard GCM with uniform correlation

structure

The basic model we consider is the following:

Y = XBZ ′ + e, vec e ∼ N (0, Σ ⊗ In) , Σ = θ1G + θ2ww′, (1)

where Yn×p is a matrix of independent p-variate observations, Xn×m is an ANOVA
design matrix, Zp×r is a regression variables matrix, and e matrix of random er-
rors. As for the unknown parameters, Bm×r is an location parameters matrix, and
θ1, θ2 are (scalar) variance parameters. Matrix Gp×p > 0 and vector w ∈ Rp are
known. The vec operator stacks elements of a matrix into a vector column-wise.
This correlation structure is called generalized uniform correlation structure. It
was studied in the context of the growth curve model (GCM) in [6], and recently
in [4]. A special case was studied also in [3].

While Žežula in [6] used directly model (1), Ye and Wang used modified model
with orthogonal decomposition:

Y = Y1 + Y2,

Y1 = Y G−
1
2 PF = XBZ ′G−

1
2 PF + e1, (2)

Y2 = Y G−
1
2 MF = XBZ ′G−

1
2 MF + e2,
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1/0325/10.
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where F = G−
1
2 w, PF is the orthogonal projection matrix onto the column space

R(F ) of F , and MF = I − PF onto its orthogonal complement.
Let us denote

S =
1

n − r(X)
Y ′MXY,

W1 = PF G−
1
2 SG−

1
2 PF , W2 = MF G−

1
2 SG−

1
2 MF .

The estimators of Žežula are

θ̂1 =
(1′w)2 Tr(S) − 1

′S1w′w

(1′w)2 Tr(G) − 1′G1w′w
, θ̂2 =

1
′S1Tr(G) − 1

′G1Tr(S)

(1′w)2 Tr(G) − 1′G1w′w
, (3)

and the estimators of Ye and Wang are

θ̂∗1 =
Tr(W2)

p − 1
=

w′G−1w. Tr (G−1S) − w′G−1SG−1w

(p − 1) (w′G−1w)
,

θ̂∗2 =
(p − 1) Tr(W1) − Tr(W2)

(p − 1)w′G−1w
=

p.w′G−1SG−1w − w′G−1w. Tr (G−1S)

(p − 1) (w′G−1w)2 .

(4)

These pairs of estimators are both unbiased, but different. Naturally, we would
like to know the variances. Since S ∼ Wp

(

n − r(X), 1
n−r(X)

Σ
)

, it is easy to
establish that

var(vec S) =
1

n − r(X)
(Ip2 + Kpp) (Σ ⊗ Σ) , (5)

where Kpp is the commutation matrix, see e.g. [5]. This immediately implies

var Tr
(

G−1S
)

=
2

n − r(X)
Tr
(

G−1ΣG−1Σ
)

,

var
(

w′G−1SG−1w
)

=
2

n − r(X)

(

w′G−1ΣG−1w
)2

,

cov
[

Tr
(

G−1S
)

, w′G−1SG−1w
]

=
2

n − r(X)
w′G−1ΣG−1ΣG−1w .

Necessary formulas for var Tr(S), var1′S1, and cov(Tr(S),1′S1) are special cases.
Short computation gives

var θ̂1 =
2

n − r(X)
·
(1′w)4 Tr (Σ2) − 2(1′w)2w′w.1′Σ2

1 + (w′w)2(1′Σ1)2

[(1′w)2 Tr(G) − 1′G1w′w]2
, (6)

var θ̂2 =
2

n − r(X)
·
[Tr(G)1′Σ1]2 − 2 Tr(G)1′G11

′Σ2
1 + (1′G1)2 Tr(Σ2)

[(1′w)2 Tr(G) − 1′G1w′w]2
, (7)
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and

var θ̂∗1 =
2

n − r(X)
·

1

(p − 1)2 (w′G−1w)2

[

(

w′G−1w
)2

Tr
(

G−1ΣG−1Σ
)

+

+
(

w′G−1ΣG−1w
)2

− 2
(

w′G−1w
) (

w′G−1ΣG−1ΣG−1w
)

]

, (8)

var θ̂∗2 =
2

n − r(X)
·

1

(p − 1)2 (w′G−1w)4

[

(w′G−1w)2 Tr
(

G−1ΣG−1Σ
)

+

+p2(w′G−1ΣG−1w)2 − 2p(w′G−1w)
(

w′G−1ΣG−1ΣG−1w
)]

. (9)

Analytical comparison of these quantities is quite difficult. Few simulations per-
formed suggest that in general Ye and Wang’s estimators tend to have smaller
variance.

Very important special case of the previous model is the model with

Σ = σ2 [(1 − ρ)Ip + ρ11′] . (10)

This correlation structure is called the uniform correlation structure or the in-
traclass correlation structure. It is the case with G = Ip and w = 1, slightly
reparametrized. It must hold

−
1

p − 1
≤ ρ ≤ 1.

As a special case of (1), estimators of σ2 and ρ can be then obtained by a simple
transformation of θ̂1 and θ̂2:

σ̂2 = θ̂1 + θ̂2 and ρ̂ =
θ̂2

θ̂1 + θ̂2

. (11)

This implies the following form of estimators due to Žežula:

σ̂2
Z =

Tr(S)

p
, ρ̂Z =

1

p − 1

(

1
′S1

Tr(S)
− 1

)

, (12)

and due to Ye and Wang:

σ̂2
Y W =

Tr (V1) + Tr (V2)

p
, ρ̂Y W = 1 −

p Tr (V2)

(p − 1) (Tr (V1) + Tr (V2))
, (13)

where
V1 = P1SP1, V2 = M1SM1 .

Ye and Wang recognized that σ̂2
Z = σ̂2

Y W , but they failed to recognize that also
ρ̂Z = ρ̂Y W .

Lemma 1. σ̂2
Z = σ̂2

Y W and ρ̂Z = ρ̂Y W for any Y .
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Proof. Trivially,

Tr (V1) = Tr (P1SP1) = Tr (SP1) =
1

p
Tr(S11

′) =
1

p
1
′S1,

and

Tr (V2) = Tr (M1SM1) = Tr (SM1) = Tr(S) − Tr (SP1) = Tr(S) −
1

p
1
′S1.

Substituting these values into (13), we easily get (12).

Thus, in the following we can write only σ̂2 and ρ̂.
This orthogonal decomposition is very useful for derivation of the distribution

of the estimators.

Lemma 2. Let H ∼ Wp(`, Ξ), Ξ > 0, and Tk×p be arbitrary matrix. Then,

Tr(THT ′) ∼

r(T )
∑

i=1

λiχ
2
` ,

where λ1, . . . , λr(T ) are all positive eigenvalues of TΞT ′ and r(T ) is the rank of
T . In particular,

E Tr(THT ′) = `

r(T )
∑

i=1

λi , var Tr(THT ′) = 2`

r(T )
∑

i=1

λ2
i .

Proof. There must exist independent r.v. X1, . . . , X` distributed as Np(0, Ξ)

such that H =
∑`

i=1 XiX
′

i = G′G, where G′ = (X1, . . . , X`). Then, TXi ∼

Nk (0, TΞT ′) ∀ i (which may be singular). According to the Theorem in [1] it
holds

Tr(THT ′) = Tr ((GT ′)′(GT ′)) ∼

r(T )
∑

i=1

λiχ
2
` ,

where λ1, . . . , λr(T ) are all positive eigenvalues of TΞT ′. Since χ2’s are indepen-
dent, the claims about mean and variance are trivial.

The following results concerning distributions of Tr (V1) and Tr (V2) can be
found in [4], but without proof. We extend these results to the parameters of
interest.

Theorem 3. Distributions of Tr (V1) and Tr (V2) are independent,

Tr (V1) ∼
σ2[1 + (p − 1)ρ]

n − r(X)
χ2

n−r(X),

Tr (V2) ∼
σ2(1 − ρ)

n − r(X)
χ2

(p−1)(n−r(X)),
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so that

σ̂2 ∼
σ2

p(n − r(X))

[

(1 + (p − 1)ρ)χ2
n−r(X) + (1 − ρ)χ2

(p−1)(n−r(X))

]

,

1 − ρ

1 + (p − 1)ρ

[

1 + (p − 1)ρ̂

1 − ρ̂

]

∼ Fn−r(X),(p−1)(n−r(X)) .

Proof. It is well known that under normality

S ∼ Wp

(

n − r(X),
1

n − r(X)
Σ

)

.

(see e.g. Theorem 3.8 in [5]). We want to make use of Lemma 2 with ` = n−r(X),

Ξ =
1

n − r(X)
Σ, T = P1, and also with T = M1. Since

P1

(

1

n − r(X)
Σ

)

P1 =
σ2[1 + (p − 1)ρ]

n − r(X)
P1

is a multiple of idempotent matrix of rank 1, its only positive eigenvalue is equal
to σ2[1+ (p− 1)ρ]/(n− r(X)). Similarly, since M1 is idempotent with rank p− 1
and

M1

(

1

n − r(X)
Σ

)

M1 =
σ2(1 − ρ)

n − r(X)
M1 ,

it has p−1 positive eigenvalues which are all equal to σ2(1−ρ)/(n− r(X)). Now
the results for Tr (V1) and Tr (V2) follow from Lemma 2, perpendicularity of M1

and P1, and properties of χ2-distribution.
This, together with (13), immediately implies the result for σ̂2. The second

formula in (13) can be transformed to

1 + (p − 1)ρ̂

1 − ρ̂
=

(p − 1) Tr (V1)

Tr (V2)
.

Because the distributions of Tr (V1) and Tr (V2) are independent, clearly

σ2(1 − ρ)(n − r(X))

σ2[1 + (p − 1)ρ](n − r(X))
·
(p − 1) Tr (V1)

Tr (V2)
∼ Fn−r(X),(p−1)(n−r(X)) .

This result is not very useful with respect to σ̂2, since its distribution depends
on both σ2 and ρ, but enables us to test for any specific value of ρ. Using simple
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transformation, we can even derive directly probability density function of ρ̂:

f(x) =

(

1 − ρ

(p − 1)[1 + (p − 1)ρ]

)
n−r(X)

2 Γ
(

p (n−r(X))
2

)

Γ
(

n−r(X)
2

)

Γ
(

(p−1)(n−r(X))
2

)×

×

(

1 +
1 − ρ

(p − 1)[1 + (p − 1)ρ]

1 + (p − 1)x

1 − x

)

−
p(n−r(X))

2

×

×

(

1 + (p − 1)x

1 − x

)
n−r(X)

2
−1

p

(1 − x)2
.

Also, 1 − α confidence interval for ρ is given by

(

1 − c1

1 + (p − 1)c1

;
1 − c2

1 + (p − 1)c2

)

, (14)

where

c1 =
1 − ρ̂

1 + (p − 1)ρ̂
Fn−r(X),(p−1)(n−r(X))

(

1 −
α

2

)

and

c2 =
1 − ρ̂

1 + (p − 1)ρ̂
Fn−r(X),(p−1)(n−r(X))

(α

2

)

.

Figures 1–4 below show histograms and theoretical densities of ρ̂ for a special
case of the model (quadratic growth in three groups, 2500 simulations) for various
true values of unknown parameter.

Example: Let us consider random sample from bivariate normal distribution
with the same variances in both dimensions. It can be formally written as GCM
with the uniform correlation structure:

Y =







Y11 Y12
...

...
Yn1 Yn2






= 1n (µ1, µ2) I2 + e , e ∼ Nn×2

(

0n×2, σ
2

(

1 ρ
ρ 1

)

⊗ In

)

.

Using the above mentioned estimator we get

ρ̂ =
2s12

s2
1 + s2

2

,

where s12 is sample covariance of the two variables, and s2
1 and s2

2 sample vari-
ances. This estimator is slightly more effective than standard sample correlation
coefficient (in the sense of MSE).
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2 The extended growth curve model

The extended growth curve model (ECGM) with fixed effects, called also sum-
of-profiles model, is

Y =
k
∑

i=1

XiBiZ
′

i + e , e ∼ Nn×p (0, Σ ⊗ In) . (15)

The dimensions of matrices Xi, Bi, and Zi are n×mi, mi×ri, p×ri, respectively.
Usually it is supposed that column spaces of Xi’s are ordered,

R (Xk) ⊆ · · · ⊆ R (X1) , (16)

while nothing is said about different Zi’s. Recently, Hu (see [2]) came up with
modification of the model, assuming

X ′

iXj = 0 ∀ i 6= j. (17)

His idea is to separate groups rather then models. We will show that the two
models are under certain conditions equivalent.

Example: Let us consider EGCM with two groups with different growth
patterns – linear and quadratic:

Yij = β1 + β2tj + eij , i = 1, . . . , n1 , j = 1, . . . , p ,

= β3 + β4tj + β5t
2
j + eij , i = n1 + 1, . . . , n1 + n2 , j = 1, . . . , p .
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This model can be written as

Y =

(

1n1 0
0 1n2

)(

β1 β2

β3 β4

)(

1 . . . 1
t1 . . . tp

)

+

(

0
1n2

)

β5

(

t21 . . . t2p
)

+ e,

or, by the new way, as

Y =

(

1n1

0

)

(β1, β2)

(

1 . . . 1
t1 . . . tp

)

+

(

0
1n2

)

(β3, β4, β5)





1 . . . 1
t1 . . . tp
t21 . . . t2p



+ e.

Note that in the second form in the previous example R (Z1) ⊂ R (Z2). This
leads to idea that we can consider a model in which the column spaces of all
Zi’s are nested, which naturally arises in situations when different groups use
polynomial regression functions of different order.

Let us consider model (15) with condition (16), such that

n − p ≥

k
∑

i=1

r (Xi) . (18)

Since Xi’s are 0-1 matrices whose columns are indicators of different groups,
w.l.o.g. we can assume that all columns of X1 are mutually perpendicular, and
columns of every Xi+1 are a subset of columns of Xi. Let us define X∗

k = Xk

and X∗

i = Xi�Xi+1, i = 1, . . . , k−1, where the symbol Xi�Xi+1 denotes matrix
consisting of those columns of Xi which are not in Xi+1. It is easy to see, that
Xi = (X∗

i , . . . , X∗

k) and PXi
− PXi+1

= PX⊥

i+1∩Xi
= PX∗

i
.

Then, we can reformulate the model (15) with von Rosen’s condition (16) in
the following way:

E Y =
k
∑

i=1

XiBiZi
′ =

k
∑

i=1

(X∗

i , . . . , X∗

k)







B∗

ii
...

B∗

ik






Z ′

i =
k
∑

i=1

k
∑

j=i

X∗

j B∗

ijZ
′

i =

=
k
∑

j=1

j
∑

i=1

X∗

j B∗

ijZ
′

i =
k
∑

j=1

X∗

j

(

B∗

1j, . . . , B
∗

jj

)







Z ′

1
...

Z ′

j







df
=

k
∑

j=1

X∗

j B∗

j Z
∗

j
′ (19)

(matrices X∗

j have dimensions n×m∗

j and B∗

ij m∗

j × ri, where mi =
∑k

j=i m
∗

j .) It
is now easy to see that model (19) satisfies Hu’s condition:

X∗

i
′X∗

j = 0 ∀ i 6= j. (20)

Moreover, now we have

Z∗

i = (Z1, . . . , Zi) , ∀ i = 1, . . . , k,
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which implies R(Z∗

1 ) ⊂ · · · ⊂ R(Z∗

k).
ECGM with Hu’s condition is much easier to handle. If all X∗

i ’s and Z∗

i ’s are
of full rank, then all B∗

i ’s are estimable, and unbiased LSE B̂∗

i depend only on
X∗

i and Z∗

i :
B̂∗

i =
(

X∗

i
′X∗

i

)

−1
X∗

i
′Y Σ−1Z∗

i

(

Z∗

i
′Σ−1Z∗

i

)

−1
, (21)

see [2]. Such a closed form was difficult to obtain in the von Rosen model. Even
for two components the estimators are rather complicated:

B̂1 = (X1
′X1)

−1
X1

′Y Σ−1Z1

(

Z1
′Σ−1Z1

)

−1

− (X1
′X1)

−1
X1

′PX2Y

(

P
Σ−1MΣ−1

Z1
Z2

)′

Σ−1Z1

(

Z1
′Σ−1Z1

)

−1
,

B̂2 = (X2
′X2)

−1
X2

′Y Σ−1Z2

(

Z2
′Σ−1MΣ−1

Z1
Z2

)

−1

,

see [7]. Each B̂1 and B̂2 depends on both Z1 and Z2, and B̂1 even on X2.
Estimator of common variance matrix can be split into perpendicular pieces:

Σ̂ =
1

n − r(X1)
Y ′MX1Y =

1

n −
∑k

i=1 r(X∗

i )
Y ′

(

I −

k
∑

i=1

PX∗

i

)

Y. (22)

In the last expression, the left-hand side term is the estimator using von Rosen’s
model and right-hand side one using Hu’s model. It is easy to see, that the
estimators are equivalent, since X1 = (X∗

1 , . . . , X
∗

k).
The situation in Hu’s model is much easier also for a special correlation struc-

ture Σ = σ2R with R known. The unbiased estimator of residual variance σ2

is
σ̂2 =

1

n −
∑k

i=1 r(Xi) Tr
(

PR−1

Zi
R
) Tr

(

(Y − Ŷ )′(Y − Ŷ )
)

,

where Ŷ =
∑k

i=1 PXi
Y
(

PΣ−1

Zi

)

′

is the unbiased estimator of E Y .

3 Conclusions

Method of orthogonal decomposition is very promising in complex models. Many
tasks, which are very difficult or impossible to handle in basic models, can be
done with ease in models consisting of mutually orthogonal components. As it
is shown above, simple transformation can change a model into an equivalent
which allows to determine explicit forms of estimators and/or their distribution.
We hope the method will prove even more useful in the future, whether in the
models investigated here or in some others.
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