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Abstract. The model of housing market is due to Shapley and Scarf (1974).
Their paper contains the celebrated result stating that each housing market ad-
mits an economic equilibrium. However, in a slight modification of this model
which admits duplicate houses the existence of equilibrium is no longer ensured.
In this paper we study the computational complexity of the deficiency problem for
housing markets with duplicate houses: what is the minimum number of agents
who cannot get a most preferred house in their budget set? We show that this
problem is NP-hard even under several severe restrictions placed on the housing
market, e.g. if the maximum number of houses of one type is two and the max-
imum number of preferred houses for each agent is one. We further prove that
the problem is fixed-parameter intractable if the parameter is the value of the
deficiency we aim for. By contrast, we provide an FPT algoritm for computing
the deficiency of the market, if the parameter is the number of different house
types.

Keywords: Housing market, Economic equilibrium, Algorithm, NP-completeness,
Parameterized complexity
AMS classification: 91A12, 91A06, 68Q25

1 Introduction

The mathematical model of a housing market was introduced in the seminal paper
of Shapley and Scarf [10]. In a housing market there is a finite set of agents, each
one owns one unit of a unique indivisible good (house) and wants to exchange it
for another, more preferred one; the preference relation of an agent is a linearly
ordered list (possibly with ties) of a subset of goods. Shapley and Scarf proved
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the Hungarian National Research Fund OTKA 67651 (Schlotter) and by the Slovak-Hungarian
APVV grant SK-HU-003-08.
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that in such a market an economic equilibrium always exists. A constructive proof
in the form of the Top Trading Cycles algorithm is attributed to Gale (see [10]).
However, if we drop the assumption that each agent’s house is unique, it may

happen that the economic equilibrium no longer exists, and it is even NP-complete
to decide its existence, see Fekete, Skutella, and Woeginger [5]. Further studies
revealed that the border between easy and hard cases is very narrow: if agents
have strict preferences over house types then a polynomial algorithm to decide
the existence of an equilibrium is possible, see Cechlárová and Fleiner [2]. Alas,
the problem remains NP-complete even if each agent only distinguishes between
three classes of house types (trichotomous model): better house types, the type
of his own house, and unacceptable house types [2]. So it becomes interesting to
study the so-called deficiency of the housing market, i.e. the minimum possible
number of agents who cannot get a most preferred house in their budget set under
some prices of the house types.
In the present paper we give several results concerning the computation of the

deficiency of housing markets, also from the parameterized complexity viewpoint.
First, we show that the deficiency problem is NP-hard even in the case when each
agent prefers only one house type to his endowment, and the maximum number of
houses of the same type is two. This result is the strongest possible one in the sense
that each housing market without duplicate houses admits an equilibrium [10].
Then we show that the deficiency problem is W[1]-hard with the parameter α
describing the desired value of the deficiency, even if each agent prefers at most
two house types to his own house, and the preferences are strict. Notice that
the parameterized complexity of the case when each agent prefers only one house
type to his endowment remains open. On the other hand, if α is constant, a brute
force algorithm running in polynomial time can decide whether the deficiency is
at most α, assuming that preferences are strict. This is in a strict contrast with
the trichotomous model where even the case α = 0 is NP-hard [2]. Finally, we
provide an FPT algorithm for computing the deficiency (that works irrespectively
of the type of preferences) if the parameter is the number of different house types.

2 Preliminaries

The paper is organized as follows. In this section, we introduce the model under
examination, and give a brief overview of the basic concepts of parameterized
complexity. In Section 3 we present some hardness results, whilst Section 4 is
devoted to the proposal of two algorithms concerned with the computation of
deficiency.

2.1 Description of the model

Let A be a set of N agents, H a set of M house types. The endowment function
ω : A → H assigns to each agent the type of house he originally owns. In the
classical model of Shapley and Scarf [10], M = N and ω is a bijection. If N > M
we say that the housing market has duplicate houses. Preferences of agent a are
given in the form of a linear preference list P (a). The house types appearing in
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the preference list of agent a are said to be acceptable, and we assume that ω(a)
belongs to the least preferred acceptable house types for each a ∈ A. The nota-
tion i �a j means that agent a prefers house type i to house type j. If i �a j and
simultaneously j �a i, we say that house types i and j are in a tie in a’s preference
list; if i �a j and not j �a i, we write i �a j and say that agent a strictly prefers
house type i to house type j. (If the agent is clear from the context, the subscript
will be omitted.) The N -tuple of preferences (P (a), a ∈ A) will be denoted by P
and called the preference profile.
The housing market is the quadruple M = (A, H, ω,P). We also define the

submarket ofM restricted to some agents of S ⊆ A in the straightforward way.
We say that M is a housing market with strict preferences if there are no

ties in P . The maximum house-multiplicity of a market M, denoted by β(M),
is the maximum number of houses of the same type, i.e. β(M) = maxh∈H |{a ∈
A : ω(a) = h}|. The maximum number of preferred house types in the market,
denoted by γ(M), is the maximum number of house types that any agent might
strictly prefer to its own house, i.e. γ(M) = maxa∈A |{h ∈ H : h �a ω(a)}|. We
say that the marketM is simple, if γ(M) = 1.
The set of types of houses owned by agents in S ⊆ A is denoted by ω(S). For

each agent a ∈ A we denote by fT (a) the set of the most preferred house types
from T ⊆ H. For a set of agents S ⊆ A we let fT (S) =

⋃
b∈S fT (b). For one-

element sets of the form {h} we often write simply h in expressions like ω(S) =
h, fT (S) = h, etc.
We say that a function x : A → H is an allocation if there exists a permuta-

tion π on A such that x(a) = ω(π(a)) for each a ∈ A. Notation x(S) for S ⊆ A
denotes the set

⋃
a∈S{x(a)}. In the whole paper, we assume that allocations are

individually rational, meaning that x(a) is acceptable for each a ∈ A. Notice that
for each allocation x, the set of agents can be partitioned into directed cycles (trad-
ing cycles) of the form K = (a0, a1, . . . , a`−1) in such a way that x(ai) = ω(ai+1)
for each i = 0, 1, . . . , ` − 1 (here and elsewhere, indices for agents on cycles are
taken modulo `). We say that agent a is trading in allocation x if x(a) 6= ω(a).
Given a price function p : H → R, the budget set of agent a according to p

is the set of house types that a can afford, i.e. {h ∈ H : p(h) ≤ p(ω(a))}. A
pair (p, x), where p : H → R is a price function, and x is an allocation is an
economic equilibrium for market M if x(a) is among the most preferred house
types in the budget set of a.
It is known that if (p, x) is an economic equilibrium, then x is balanced with

respect to p, i.e. p(x(a)) = p(ω(a)) for each a ∈ A (see [5, 2]).
As a housing market with duplicate houses may admit no equilibrium, we are

interested in price-allocation pairs that are “not far” from the equilibrium. One
possible measure of this distance was introduced in [2] by the notion of deficiency
of the housing market.
An agent is said to be unsatisfied with respect to (p, x) if x(a) is not among

the most preferred house types in his budget set according to p. We denote
by DM(p, x) the set of unsatisfied agents inM w.r.t. (p, x); more formally

DM(p, x) = {a ∈ A : ∃h ∈ H such that h �a x(a) and p(h) ≤ p(ω(a))}.

Given a price function p and an allocation x balanced w.r.t. p, we say that (p, x)
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is an α-deficient equilibrium, if |DM(p, x)| = α. Clearly, an economic equilibrium
is a 0-deficient equilibrium. The deficiency of a housing market M, denoted
by D(M) is the minimum α such that M admits an α-deficient equilibrium.
Given a housing marketM and some α ∈ N, the task of the Deficiency problem
is to decide whether D(M) ≤ α.
We shall deal with the computational complexity of Deficiency. For com-

putational purposes, we shall say that the size of the market is equal to the total
length of all preference lists of the agents, denoted by L.

2.2 Parameterized complexity

The aim of parameterized complexity theory is to study the computational com-
plexity of NP-hard problems in a more detailed manner than in the classical
setting. In this approach, we regard the running time of an algorithm as a func-
tion that depends not only on the size but also on some other crucial properties
of the input. To this end, for each input of a given problem we define a so-
called parameter, usually an integer, which describes some important feature of
the input.
Given a parameterized problem, we call an algorithm fixed-parameter tractable

or FPT, if its running time on an input I with parameter k is bounded by f(k)|I|O(1)
for some computable function f that only depends on k, and not on the size |I| of
the input. The intuitive motivation for this definition is that such an algorithm
might be tractable even for large instances, if the parameter k is small. Hence,
looking at some parameterized version of an NP-hard problem, an FPT algorithm
may offer us a way to deal with a large class of typical problem instances.
The parameterized analysis of a problem might also reveal its W[1]-hardness,

which is a strong argument showing that an FPT algorithm is unlikely to exist.
Such a result can be proved by means of an FPT-reduction from an already known
W[1]-hard problem such as Clique. Instead of giving the formal definitions, we
refer to the books by Flum and Grohe [6] or by Niedermeier [9]. For a compre-
hensive overview on the area, see the monograph of Downey and Fellows [4].
Considering the Deficiency problem, the most natural parameters, each de-

scribing some key property of a marketM, are as follows: the number of different
houses types |H| =M , the maximum house-multiplicity β(M), and the maximum
number of preferred house types γ(M) in the market. The value α describing the
deficiency of the desired equilibrium can also be a meaningful parameter, if we
aim for a price-allocation pair that is “almost” an economic equilibrium. The
next sections investigate the influence of these parameters on the computational
complexity of the Deficiency problem.

3 Hardness results

We begin with a simple observation which will be used repeatedly later on.

Lemma 1 LetM = (A, H, ω,P) be a housing market, p a price function and x a
balanced allocation for p. Suppose ω(U) = u and ω(Z) = z for some sets U,Z ⊆ A
of agents. Suppose also that fH(Z) = u and fT (U) = z where T ⊆ H contains the



K. Cechlárová, I. Schlotter: Computing the deficiency of housing markets ... 5

budget sets of all agents in U . Then p(u) 6= p(z) implies that at least min{|U |, |Z|}
agents in U ∪ Z are unsatisfied with respect to (p, x).

Proof. If p(u) 6= p(z) and the allocation is balanced, agents from the two sets
cannot trade with each other. Therefore, due to the assumptions, if p(u) > p(z)
then all the agents in U are unsatisfied; if p(z) > p(u) then all the agents in Z
must be unsatisfied, and the assertion follows.

Theorem 2 Deficiency is NP-complete even for simple markets M such that
β(M) = 2.

Proof. We provide a polynomial reduction from theDirected Feedback Ver-
tex Set. We shall take its special version where the out-degree of each vertex is
at most 2, which is also NP-complete, see Garey and Johnson [7], Problem GT7.
Given a directed graph G = (V, E) with vertex set V and arc set E such that

the outdegree of each vertex is at most 2, and an integer k, we construct a simple
housing marketM with β(M) = 2 such that D(M) ≤ k if and only if G admits
a feedback vertex set of cardinality at most k.
First, there are two house types v̂, v̂′ for each vertex v ∈ V and k + 1 house

types ê1, . . . , êk+1 for each arc e ∈ E. The agents and their preferences are given
in Table 1. Here and later on, we write [n] for {1, 2, . . . , n}. The last entry in the
list of each agent represents its endowment.

agent preference list

one agent v̄ for each v ∈ V v̂′ � v̂
one agent ē for each e = vu ∈ E ê1 � v̂′

two agents ēi for each e = vu ∈ E; i ∈ [k] êi+1 � êi

two agents ēk+1 for each e = vu ∈ E û � êk+1

Table 1: Endowments and preferences of agents in the market.

It is easy to see that M is simple, β(M) = 2, the number of house types
inM is 2|V |+ (k + 1)|E| and the number of agents |V |+ (2k + 3)|E|. To make
the following arguments more straightforward, let us imagine M as a directed
multigraph Ḡ, where vertices are house types, and an arc from vertex h ∈ H
to vertex h′ ∈ H corresponds to an agent a with ω(a) = h and h′ �a h. Now,
each directed cycle C in G has its counterpart C̄ in Ḡ, but each arc e = vu
on C corresponds to a “thick path” v̄ → ū containing k + 1 consecutive pairs of
parallel arcs in Ḡ (agents ēi, i ∈ [k + 1]). We shall also say that agents ē, ēi, i =
1, 2, . . . , k + 1 are associated with the arc e = vu.
Now suppose that G contains a feedback vertex set W with cardinality at

most k. For each v ∈ W we remove agent v̄ (together with its endowed house of
type v̂) fromM. The obtained submarket is acyclic, so assigning prices to house
types in this submarket according to a topological ordering, we get a price function
and an allocation with no trading inM, where the only possible unsatisfied agents
are the agents {v̄ | v ∈ W}.
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Conversely, suppose thatM admits a k-deficient equilibrium (p, x). If x pro-
duced any trading, then each trading cycle would necessarily involve some thick
path v̄ → ū and thus exactly one agent from each pair ēi, i ∈ [k+ 1] on this thick
path, making at least k + 1 agents unsatisfied. Hence, there is no trading in x.
Now, take any cycle C = (v1, v2, . . . , vr, v1) in G. Since it is impossible that all
the inequalities p(v̂1) < p(v̂2), p(v̂2) < p(v̂3),. . . , p(v̂r) < p(v̂1) along the vertices
of C are fulfilled, we get that at least one agent a in C̄ is unsatisfied. If this agent
is v̄ or belongs to the set of agents associated to an arc e = vu, we choose vertex v
into a set W . Now it is easy to see that W is a feedback vertex set and |W | ≤ k.

The above theorem yields that Deficiency remains NP-hard even if γ(M) =
1 and β(M) = 2 holds for the input marketM. Next, we show that regarding α
(the desired value of deficiency) as a parameter is not likely to yield an FPT
algorithm, not even if γ(M) = 2 holds.

Theorem 3 The Deficiency problem for a market M with strict preferences
and with γ(M) = 2 is W[1]-hard with the parameter α.

Proof. We are going to show a reduction from theW[1]-hardClique problem,
parameterized by the size of the solution. Given a graph G and an integer k as the
input of Clique, we will construct a housing marketM = (A, H, ω,P) with strict
preferences and with γ(M) = 2 in polynomial time such that M has deficiency
at most α = k2 if and only if G has a clique of size k. Since α depends only on k,
this construction yields an FPT-reduction, and we obtain that Deficiency is
W[1]-hard with the parameter α.
Let G = (V, E) with V = {v1, v2 . . . , vn} and E = {e1, e2 . . . , em}. We can

clearly assume n > k2+k, as otherwise we could simply add the necessary number
of isolated vertices to G, without changing the answer to the Clique problem.
Similarly, we can also assume m > k2, as otherwise we can add the necessary
number of independent edges (with newly introduced endvertices) to G.
The set of house types inM is H = {â, b̂, ĉ, d̂, f̂ c

1 , f̂
c
2 , f̂

d
1 , f̂

d
2 }∪Q̂∪Ŝ, where Q̂ =

{q̂i | i ∈ [n]}, and Ŝ = {ŝi | i ∈ [m]}. Let t = max{2m− k(k− 1), n− k+ α+ 1}.
First, we define seven sets of agents, A, B, B′, F c

1 , F
c
2 , F

d
1 and F d

2 . The cardinality
of these agent sets are shown in Table 2; note that there might be zero agents
in the set B′. Any two agents will have the same preferences and endowments if
they are contained in the same set among these seven sets. Additionally, we also
define agents in C ∪ D ∪ Q ∪ S, where C = {ci | i ∈ [n]}, Q = {qi | i ∈ [n]},
D = {d1i , d2i | i ∈ [m]}, and S = {s1i , s2i | i ∈ [m]}. The preference profile of the
market is shown on Table 2. Again, the endowment of an agent is the last house
type in its preference list.
First, let us suppose that M admits a balanced allocation x for some price

function p such that (p, x) is α-deficient. Observe that fH(c) = â for each c ∈ C,
fH(a) = ĉ for each a ∈ A. By |C| > |A| > α and Lemma 1, we obtain that p(â) =
p(ĉ) must hold. Moreover, by |C| = |A| + k we also know that there are at
least k agents in C who cannot obtain a house of type â, let C∗ be a subset of C
containing k such agents. Clearly, the agents in C∗ are unsatisfied. Moreover, if
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agent preferences “multiplicity”

a ∈ A ĉ � â |A| = n− k

b ∈ B â � d̂ � b̂ |B| = 2m− k(k − 1)
b ∈ B′ â � b̂ |B′| = t− (2m− k(k − 1))
f ∈ F c

1 ĉ � f̂ c
2 � f̂ c

1 |F c
1 | = k

f ∈ F c
2 f̂ c

1 � f̂ c
2 |F c

2 | = k + 1
f ∈ F d

1 d̂ � f̂d
2 � f̂d

1 |F d
1 | = k(k − 1)

f ∈ F d
2 f̂d

1 � f̂d
2 |F d

2 | = k(k − 1) + 1
ci ∈ C â � q̂i � ĉ |C| = n

d ∈ D b̂ � ŝi � d̂ if d ∈ {d1i , d2i } |D| = 2m
qi ∈ Q f̂ c

1 � d̂ � q̂i |Q| = n

s1i ∈ S q̂x � f̂d
1 � ŝi where ei = vxvy ∈ E, x < y |{s1i | i ∈ [m]}| = m.

s2i ∈ S q̂y � f̂d
1 � ŝi where ei = vxvy ∈ E, x < y |{s2i | i ∈ [m]}| = m.

Table 2: The preference profile of the marketM.

all the remaining agents in C \ C∗ are satisfied, then they must be trading with
the agents of A.
Second, note that fH(b) = â for each b ∈ B ∪ B′, so |B ∪ B′| > |A| + α

(which follows from the definition of t) implies that p(â) > p(b̂) must hold, as
otherwise more than α agents in B ∪B′ could afford a house of type â but would
not be able to buy one. Thus, the budget set of the agents B ∪ B′ does not
contain the house type â. In particular, we get that no agent in B′ is trading
in x. Note also that fH\{â}(b) = d̂ and fH(d) = b̂ for each b ∈ B and d ∈ D, so
Lemma 1 and |D| > |B| > α yield that only p(b̂) = p(d̂) is possible. Taking into
account that |B| = |D| − k(k − 1), we know that there must be at least k(k − 1)
unsatisfied agents in D who are not assigned a house of type b̂; let D∗ denote this
set of unsatisfied agents. Notice that if all the agents in D \D∗ are satisfied, then
they must be trading with the agents of B.
Since C∗ ∪ D∗ contains α unsatisfied agents w.r.t. (p, x), and the deficiency

of (p, x) cannot be more than α, we know that no other agent can be unsatisfied.
By the above arguments, this implies x(A) = ĉ, x(C \ C∗) = â, x(B) = d̂,
and x(D \D∗) = b̂.
Next, we will show that x(f) = ĉ for each f ∈ F c

1 and x(f) = d̂ for each f ∈ F d
1 .

We will only prove the first claim in detail, as the other statement is symmet-
ric. First, observe that p(f̂ c

2) ≥ p(f̂ c
1) is not possible, because by fH(F c

2 ) = f̂ c
1

and |F c
2 | > |F c

1 | such a case would imply at least one unsatisfied agent in F c
2 .

Thus, we know p(f̂ c
2) < p(f̂ c

1), which means that f̂ c
2 is in the budget set of each

agent in F c
1 . But since they do not buy such a house (as x is balanced), and

they cannot be unsatisfied, we obtain that they must prefer their assigned house
to f̂ c

2 . Thus, for each agent f in F c
1 we obtain x(f) = ĉ, proving the claim. The

most important consequence of these facts is that every agent in C∗ ∪ D∗ must
be trading according to x, as otherwise the agents in F c

1 and in F d
1 would not be

able to get a house of type ĉ or d̂, respectively.
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Recall that agents in C∗ are unsatisfied, as they do not buy houses of type â.
But since they are trading, we know that they buy k houses from the set Q̂;
let q̂i1 , q̂i2 , . . . , q̂ik be these houses. Clearly, the agents F c

1 , C
∗, Q∗ = {qij | j ∈

[k]} trade with each other at price p(ĉ), yielding x(F c
1 ) = ĉ, x(C∗) = ω(Q∗)

and x(Q∗) = f̂ c
1 .

Similarly, the k(k − 1) agents in D∗ must be trading, buying k(k − 1) houses
of the set Ŝ; let S∗ denote the owners of these houses. Now, it should be clear
that exactly 2m− k(k− 1) houses of type d̂ are assigned to the agents B, and the
remaining k(k − 1) such houses are assigned to the agents F d

1 .
It should also be clear that the agents S∗ are trading with agents F d

1 , so we
obtain x(F d

1 ) = ω(D∗) = d̂ and x(D∗) = ω(S∗). Thus, agents of Q\Q∗ can neither
be assigned a house of type d̂ (as those are assigned to the agents B ∪ F d

1 ∗), nor
a house of type f̂ c

1 (as those are assigned to agents in Q∗). As agents of Q \ Q∗

cannot be unsatisfied, we have that p(q̂i) < p(d̂) < p(f̂ c
1) holds for each qi ∈ Q\Q∗,

meaning that these agents do not trade according to x. (Recall that p(d̂) = p(b̂) <
p(â) = p(ĉ) = p(f̂ c

1).)
Now, if x(d) = si for some agent d ∈ D∗ and i ∈ [m], then we know that p(ŝi) =

p(d̂) = p(f̂d
1 ). As neither of s

1
i and s2i can be unsatisfied, but neither of them can

get a house from Q̂, it follows that both of them must obtain a house of type f̂d
1 .

Therefore, the set S∗ must contain pairs of agents owning the same type of house,
i.e. S∗ = {s1ji

, s2ji
| i ∈ [k(k − 1)]}.

Let us consider the agents s1j and s2j in S∗, and let vx and vy denote the two
endpoints of the edge ej, with x < y. Since s1j prefers q̂x to x(s1j) = fd

1 , we
must have p(ŝj) < p(q̂x), since s1j must not be unsatisfied. Similarly, s

2
j prefers q̂y

to x(s2j) = fd
1 , implying p(ŝj) < p(q̂y). Taking into account that p(ŝj) = p(d̂) >

p(q̂i) for each qi ∈ Q \ Q∗, we get that both qx and qy must be contained in Q∗.
Hence, each edge in the set E∗ = {ej | s1j , s

2
j ∈ S∗} in G must have endpoints in

the vertex set V ∗ = {vi | qi ∈ Q∗}. This means that the
(

k
2

)
edges in E∗ have

altogether k endpoints, which can only happen if V ∗ induces a clique of size k
in G. This finishes the soundness of the first direction of the reduction.
For the other direction, suppose that V ∗ is a clique in G of size k. We construct

an α-deficient equilibrium (p, x) forM as follows. Let I∗ = {i | vi ∈ V ∗} and J∗ =
{j | ej = vxvy, vx ∈ V ∗, vy ∈ V ∗} denote the indices of the vertices and edges of
this clique, respectively. We define Q∗ = {qi | i ∈ I∗}, C∗ = {ci | i ∈ I∗},
S∗ = {s1j , s2j | j ∈ J∗}, and D∗ = {d1j , d2j | j ∈ J∗}. Now, we are ready to define
the price function p as follows.

p(â) = p(ĉ) = p(f̂ c
1) = p(q̂i) = 4 for each qi ∈ Q∗,

p(b̂) = p(d̂) = p(f̂d
1 ) = p(ŝi) = 3 for each i where s1i , s

2
i ∈ S∗,

p(q̂i) = 2 for each qi ∈ Q \Q∗,
p(h) = 1 for each remaining house type h.

It is straightforward to verify that the above prices form an α-deficient equi-
librium with the allocation x, defined below.
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x(A) = ω(C \ C∗), x(C \ C∗) = â,
x(B) = ω(D \D∗), x(D \D∗) = b̂,
x(F c

1 ) = ω(C∗), x(C∗) = ω(Q∗), x(Q∗) = f̂ c
1 ,

x(F d
1 ) = ω(D∗), x(D∗) = ω(S∗), x(S∗) = f̂d

1 ,
x(a) = ω(a) for each remaining agent a.

It is easy to see that D(p, x) = C∗ ∪ D∗, implying that (p, x) is indeed α-
deficient by |C∗ ∪ D∗| = k + k(k − 1) = α. The only non-trivial observation we
need during this verification is that p(q̂x) > p(ŝi) and p(q̂y) > p(ŝi) for any si,
where vx and vy are the endpoints of ei. These inequalities trivially hold if si /∈ S∗.
In the case si ∈ S∗ we know vx, vy ∈ V ∗ (since ei is an edge in the clique V ∗),
which yields p(q̂x) = p(q̂y) = p(ŝi) + 1.
Hence, the reduction is correct, proving the theorem.

4 Algorithms for computing the deficiency

Theorem 3 implies that we cannot expect an algorithm with complexity f(α)LO(1)

for some computable function f for deciding whether a given market has deficiency
at most α . However, we present a simple brute force algorithm that solves the
Deficiency problem for strict preferences in O(Lα+1) time, which is polynomial
if α is a fixed constant. Recall that due to the results of [2], no such algorithm
is possible if ties are present in the preference lists, as even the case α = 0 is
NP-hard in the trichotomous model.

Theorem 4 If the preferences are strict, then the Deficiency problem can be
solved in O(Lα+1) time.

Proof. Suppose (p, x) is an α-deficient equilibrium for the market M =
(A, H, ω,P), and let DM(p, x) = {a1, a2, . . . , aα} be the set of unsatisfied agents.
Let also hi = x(ai) denote the house type obtained by the unsatisfied agent ai for
each i ∈ [α].
Now, we define a set of modified preference lists P [p, x] as follows: for each

agent a ∈ DM(p, x) we delete every house type from its preference list, except
for x(a) and ω(a). We claim that (p, x) is an equilibrium allocation for the modi-
fied marketM[p, x] = (A, H, ω,P [p, x]). First, it is easy to see that x is balanced
with respect to the price function p and forM[p, x], as neither the prices nor the
allocation was changed. Thus, we only have to see that there are no unsatisfied
agents in M[p, x] according to (p, x). By definition, in the market M[p, x] we
know x(ai) = fH(ai) for each agent ai ∈ DM(p, x). It should also be clear that
for each other agent b /∈ DM(p, x), we get that x(b) is the first choice of b in its
budget set according to p, since b was satisfied according to (p, x) inM. Thus, b
is also satisfied according to (p, x) inM[p, x]. This means that (p, x) is indeed an
equilibrium allocation forM[p, x].
For the other direction, it is also easy to verify that any equilibrium alloca-

tion (p′, x′) forM[p, x] results in an equilibrium forM with deficiency at most α,
as only agents in DM(p, x) can be unsatisfied in the market M with respect
to (p′, x′).
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These observations directly indicate a simple brute force algorithm solvingDe-
ficiency. For any set {a1, a2, . . . , aα} of α agents, and for any α-tuple h1, h2, . . . , hα

of house types such that hi is in the preference list of ai (for each i ∈ [α]), find out
whether there is an economic equilibrium for the modified market, constructed by
deleting every house type except for hi and ω(ai) from the preference list of ai, for
each i ∈ [α]. Finding an economic equilibrium for such a submarket can be carried
out in O(L) time using the algorithm provided by Cechlárová and Jeĺınková [3].
Note that we have L possibilities for choosing an arbitrary agent together

with a house type from its preference list (as L is exactly the number of “feasible”
agent-house pairs), so we have to apply the algorithm of [3] at most

(
L
α

)
times.

Therefore, the running time of the whole algorithm is O(Lα+1). The correctness
of the algorithm follows directly from the above discussion.

Finally, we provide an FPT algorithm for the case where the parameter is the
number of house types in the market.

Theorem 5 There is a fixed-parameter tractable algorithm for computing the de-
ficiency of a housing market with arbitrary preferences, where the parameter is
the number M of house types in the market. The running time of the algorithm
is O(MM

√
NL).

Proof. Let M = (A, H, ω,P) be a given housing market. It is clear that if
there is an α-deficient equilibrium (p, x) for M for some α, then we can modify
the price function p to p′ in a way that all prices are integers in [M ], and (p′, x)
forms an α-deficient equilibrium too. Thus, we can restrict our attention to price
functions from H to [M ].
The basic idea of the algorithm is the following: for each possible price func-

tion, we look for an allocation maximizing the number of satisfied agents. As a
result, we get the minimum number of unsatisfied agents over all possible price
functions. Note that there are exactly MM price functions that we have to deal
with.
Given a price function p : H → [M ] and some agent a, we denote by T (a)

the house types that have the same price as ω(a). Also, we denote by B(a) the
budget set of a.
Clearly, for any balanced allocation x w.r.t. p, we know x(a) ∈ T (a). Thus,

we can reduce the market by restricting the preference list of each agent a to the
house types in T (a); let P ′(a) denote the resulting list. The reduced market now
defines a digraph G with vertex set A and arcs ab for agents a, b ∈ A where b owns
a house of type contained in P ′(a); note that each vertex has a loop attached to
it. It is easy to see that any balanced allocation x indicates a cycle cover of G,
and vice versa. (A cycle cover is a collection of vertex disjoint cycles covering each
vertex.)
By definition, a is satisfied in some allocation x with respect to p, if x(a) ∈

fB(a)(a). We call an arc ab in G important, if ω(b) is contained in fB(a)(a). Hence,
an agent a is satisfied in a balanced allocation if and only if the arc leaving a
in the corresponding cycle cover is an important arc. By assigning weight 1 to
each important arc in G and weight 0 to all other arcs, we get that any maximum
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weight cycle cover in G corresponds to an allocation with the maximum possible
number of satisfied agents with respect to p.
To produce the reduced preference lists and construct the graphG, we needO(L)

operations. For finding the maximum weight cycle cover, a folklore method re-
ducing this problem to finding a maximum weight perfect matching in a bipartite
graph can be used (see e.g. [1]). Finding a maximum weight perfect matching in
a bipartite graph with |V | vertices, |E| edges, and maximum edge weight 1 can
be accomplished in O(

√
|V ||E|) time [8]. With this method, our algorithm com-

putes the minimum possible deficiency of a balanced allocation in time O(
√

NL),
given the fixed price function p. As the algorithm has to check all possible price
functions from H to [M ], the total running time of the algorithm is O(MM

√
NL).

5 Conclusion

We have dealt with the computation of the deficiency of housing markets. We
showed that in general, if the housing market contains duplicate houses, this
problem is hard even in the very restricted case where β(M) = 2 and γ(M) = 1
hold for the marketM.
To better understand the nature of the arising difficulties, we also looked

at this problem via parameterized complexity theory glasses. We proposed an
FPT algorithm for computing the deficiency in the case where the parameter
is the number of different house types. By contrast, we showed W[1]-hardness
for the problem where the parameter is the value α describing the deficiency of
the equilibrium we are looking for. This hardness result holds if γ(M) = 2,
leaving an interesting problem open: if each agent prefers only one house type
to his endowment (i.e. γ(M) = 1), is it possible to find an FPT algorithm with
parameter α that decides whether the deficiency of the given market M is at
most α?

References
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