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http://www.science.upjs.sk/csgt2004/index eng.html





Preface

Welcome to the Czech-Slovak Conference on Combinatorics and Graph Theory
‘GRAPHS 2004’.

The history of the Czech and Slovak graph-theoretical conferences dates back
to 1961, when the first meeting, containing a section on Combinatorics and Graph
Theory, took place at Liblice. Since 1969, the Czechoslovak (from 1993 Czech-
Slovak) conferences on Combinatorics and Graph Theory have been held annually.
Once in eight years, this conference becomes an international symposium, co-
organized by all main Czech and Slovak Graph Theory centers, that is a follow-up
to the famous first international conference in Smolenice in 1963.

The 2004 conference is organized by the Institute of Mathematics, Faculty of
Science, Pavol Jozef Šafárik University in Košice and Union of Slovak Mathemati-
cians and Physicists, branch Košice. The conference is held at Vyšné Ružbachy,
on 23–28 May 2004. Vyšné Ružbachy is situated in the northeastern part of Slo-
vakia and belongs to the most important Slovak spas. It is widely known because
of its sources of thermal mineral water and a famous volcanic lake called Kráter.

The scientific program of the conference consists of 50 min lectures of invited
speakers and of 20 min contributed talks presented by other participants. This
booklet contains abstracts of invited lectures and contributed talks as were sent
to us by the authors. Conference languages are English, Slovak and Czech.

Invited speakers:

Dalibor Fronček, University of Minnesota, Duluth, USA

Geňa Hahn, University of Montreal, Montreal, Canada

Pavol Hell, Simon Fraser University, Burnaby, Canada

Mirka Miller, University of Ballarat, Ballarat, Australia

Alexander Rosa, McMaster University, Hamilton, Canada

Zdeněk Ryjáček, University of West Bohemia, Plzeň, Czech Republic

Ladislav Stacho, Simon Fraser University, Burnaby, Canada

Jozef Širáň, Slovak University of Technology, Bratislava, Slovakia

We wish all participants a pleasant and fruitful stay at Vyšné Ružbachy.

Organising committee:

Igor Fabrici
Stanislav Jendrol’ (chair)
Štefan Schrötter
Gabriel Semanǐsin
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Dalibor Fronček: Incomplete and non-compact round robin tournaments 4
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Tomáš Kaiser: A revival of the Girth Conjecture . . . . . . . . . . . . 7
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Tomáš Madaras: Two variations on Franklin’s theorem . . . . . . . . . 11
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History

A list of all previous Czechoslovak (from 1993 Czech-Slovak) conferences on
Combinatorics and Graph Theory.

1961 Liblice 1986 Račkova dolina

1963 Smolenice (international) 1987 Domažlice

1966 Smolenice 1988 Lazy pod Makytou - Čertov

1969 Smolenice 1989 Hrubá Skála

1970 Modra 1990 Prachatice (international)

1971 Zlatá Idka 1991 Zempĺınska Š́ırava

1972 Štǐŕın 1992 Donovaly

1973 Staré Splavy 1993 Janov nad Nisou

1974 Praha (international) 1994 Brno

1975 Brno 1995 Herl’any

1976 Smolenice 1996 Soláň Čarták

1977 Jenǐsov 1997 Chudenice

1978 Zempĺınska Š́ırava 1998 Praha (international)

1979 Nová Ves u Branžeže 1999 Kočovce

1980 Pardubice 2000 Liptovský Trnovec

1981 Jablonec nad Nisou 2001 Sedmihorky

1982 Praha (international) 2002 Rejv́ız

1983 Zempĺınska Š́ırava 2003 Javorná

1984 Kočovce

1985 Luhačovice
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Cayley maps on surfaces with boundary

Marcel Abas

Cayley maps are embeddings of Cayley graphs in orientable surfaces without
boundary such that the cyclic local rotation of generators at each vertex is the
same. In our contribution we will consider more general embeddings of Cay-
ley graphs, allowing surfaces to be nonorientable as well and allowing boundary
components.

Edge-antimagic total labelings of graphs

Martin Bača

For a graph G = (V,E), a bijection g from V (G) ∪ E(G) onto the integers
1, 2, ..., |V (G)| + |E(G)| is called (a, d)-edge-antimagic total labeling of G if the
edge-weights w(xy) = g(x) + g(y) + g(xy), xy ∈ E(G), form an arithmetic pro-
gression with initial term a and common difference d. An (a, d)-edge-antimagic
total labeling will be called super (a, d)-edge-antimagic total if it has the property
that the vertex-labels are the integers 1, 2, ..., |V (G)|, the smallest possible labels.
We will present super (a, d)-edge-antimagic total labelings for some families of
graphs.

On antipodes in hypercubes

Rostislav Caha

(joint work with Václav Koubek)

In the talk will be presented some results and problems on finding paths with
given length in hypercubes. Some lower and upper bounds for the problem of
finding the shortest connecting paths for n antipodes will be shown.
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The crossing number of products

of 6-vertex trees with cycles

Emı́lia Draženská

The crossing number of a graph G is the minimum number of edge crossings in
any drawing of G in the plane. The crossing numbers of Cartesian products of all
four-vertex graphs with cycles and with paths are determined. There are known
crossing numbers of all Cartesian products of graphs of order five with paths
and several results of products with cycles. We summarize crossing numbers of
Cartesian products of cycles and trees on six vertices.

Unavoidable configurations in outerplanar graphs

Igor Fabrici

Every 2-connected outerplanar graph of order at least k (k ≥ 3) contains a
path on k vertices with all vertices of degree at most k+3 and a path on k vertices
with degree sum at most 4k − 2.

Every 2-connected outerplanar graph without adjacent vertices with degree
sum at most 5 contains a triangle C3 with vertices of degrees 2, 4 and b, 4 ≤ b ≤ 6,
and a 3-star K1,3 with central vertex of degree 4 and remaining vertices of degrees
2, 2 and b, 4 ≤ b ≤ 6. Moreover, all bounds are best possible.

Subchromatic index - properties and complexity

Jǐŕı Fiala

(joint work with Van Bang Le)

In an edge coloring of a graph, each color class forms a subgraph without path
of length two (a matching). An edge subcoloring generalizes this concept: Each
color class in an edge subcoloring forms a subgraph without path of length three.
While every graph with maximum degree at most two is edge 2-subcolorable, we
point out in this paper that recognizing edge 2-subcolorable graphs with maxi-
mum degree three is NP-complete, even when restricted to triangle-free graphs.
As by-products, we obtain NP-completeness results for the star index and the
subchromatic number for several classes of graphs. It is also proved that recog-
nizing edge 3-subcolorable graphs is NP-complete.

Moreover, edge subcolorings and subchromatic index of various basic graph
classes are studied. In particular, we show that every unicyclic graph is edge
3-subcolorable and edge 2-subcolorable unicyclic graphs have a simple structure,
allowing an easy linear time recognition.
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Incomplete and non-compact

round robin tournaments

Dalibor Fronček

(joint work with Mariusz Meszka, Petr Kovář, and Tereza Kovářová)

Most hockey fans (at least all Czech ones) would probably agree that the cur-
rent format of the World Championship is not good. Therefore, we can imagine
a situation when the International Ice Hockey Federation tries yet another model
of the championship. As they want to preserve the current number of teams
and games, they decide to play two qualifying groups with 8 teams in each of
them. However, because a complete tournament would take too long, they de-
cide that each team plays just 5 games rather than 7. One group consists of Slo-
vakia, Czech Republic, Sweeden, Russia, France, Denmark, Japan, and Ukraine.
The games that are not to be played include Slovakia–France, Slovakia–Japan,
Russia–Sweeden and Russia–Czech Republic. We can see that this schedule is
not fair, because Russia plays just one tough game against Slovakia while Slo-
vakia plays all the strongest teams. We will show how to avoid such a situation
and make an incomplete tournament as fair as possible. The solution is actually
a nice application of certain type of graph labeling, namely vertex-magic vertex
labeling.

On the other hand, we can consider complete round robin tournaments that
are scheduled in a bit unusual way. Many sports competitions are played as 2-
leg round robin tournaments with 2n teams. These tournaments are typically
scheduled in such a way that a schedule for a 1-leg tournament is repeated twice.
By a round we mean a collection of games in which each team plays at most one
game. A team that does not play a game in a particular round is said to have a
bye in that round.

The home and away games of every team should interchange as regularly as
possible provided that each team meets every opponent once at its own field and
once at the opponent’s field. The best home-away pattern (HAP) is indeed one
with no two consecutive home or away games (called a break in the schedule).
Obviously, we can never find a compact schedule for 2n teams with no breaks—in
this case the teams that start the season with a home game would never meet.
Therefore, looking at HAPs, the best schedule is one with the minimum number
of breaks. This number in a 1-leg round robin tournaments is 2n − 2, as proved
by de Werra.

We will show that if each team has exactly one bye, then we can construct
schedules with no breaks, and that these schedules are unique.
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Cops, robbers and graphs

Geňa Hahn

We survey some old and new results on cops-and-robbers games on graphs
and digraphs, with a host of open problems.

Proper interval graphs and bigraphs

Pavol Hell

These two well structured classes of graphs have recently seen renewed inter-
est, because of their applications, because of the many different concepts equiv-
alent to them (especially to the proper interval bigraphs), and also because of
new algorithm techniques found applicable to their recognition. I will discuss
these new developments, with focus on lexicographic breadth first search and on
certifying algorithms. This is joint work with Huang Jing, and will also include
recent results of Derek Corneil and of Rich Lundgren and his students.

Randomly 2Cn graphs

Pavel Hı́c

(joint work with Milan Pokorný)

Let G be a graph containing a subgraph H without isolated vertices. In [2]
the concept of ”randomly H graphs” is defined as follows: We call G a randomly

H graph if any subgraph of G without isolated vertices which is isomorphic to
a subgraph of H can be extended to a subgraph H1 of G such that H1 is iso-
morphic to H. Every nonempty graph is randomly K2, and also every graph
G without isolated vertices is randomly G graph. Further, every Kn is a ran-
domly H graph for every subgraph H ⊂ Kn. The general question here is for
what classes of graphs H it is possible to characterize all those graphs G that
are randomly H graphs. In [1] Alavi, Lick, and Tian characterized the complete
n-partite graphs. In [2] Chartrand, Oelermann, and Ruiz characterized graphs
that are randomly Cn (n ≥ 3). Here we give a characterisation of graphs which
are randomly 2Cn = Cn ∪ Cn (n ≥ 3).

References

[1] Alavi, Y. - Lick, D. R. - Tian, S.: Randomly complete n-partite graphs, Math.
Slovaca 39 (1989), 241–250.
[2] Chartrand, G. - Oellermann, O. - Ruiz, S.: Randomly H graphs, Math. Slo-
vaca 36 (1986), 129–136.
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Minimal eccentric sequences with two values

Pavel Hrnčiar

(joint work with Gabriela Monoszová)

A sequence of positive integers is called eccentric if there is a graph which
realizes considered sequence as the sequence of the eccentricities of its vertices.
An eccentric sequence is called minimal if it has no proper eccentric subsequence
with the same number of distinct eccentricities.

Theorem There are exactly 7 minimal eccentric sequences of type 4α, 5β, namely

47, 52; 46, 54; 45, 56; 44, 58; 43, 59; 42, 512; 4, 514.

We present a conjecture about all minimal eccentric sequences of type rα, (r+1)β.

An upper bound on the size of the smallest

trivalent regular maps of prime face length

and of large planar width

Mária Ipolyiová

The planar width of a finite, non-spherical map is the smallest number of
intersections of a non-contractible closed curve on the supporting surface of the
map with the embedded graph. Using a method based on spectral norms of
matrices we improve the existing upper bounds on the smallest trivalent regular
map of a given prime face length q the planar length of which is larger than a
given number r.

Vertex-transitive graphs:

A survey of methods and problems

Robert Jajcay

Vertex-transitive graphs have a large number of applications, their study in-
cludes a wide variety of methods from many different areas, and there is a consid-
erable number of open problems associated with this area that are both interesting
and hard.

Our presentation is a highly personal account of some of the most recent
developments in the area that the presenter has been involved with or at least
finds worth pursuing. The talk will contain many open problems and very few
answers.
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On list chromatic number

of cartesian product of two graphs

Stanislav Jendrol’

(joint work with MieczysÃlaw Borowiecki and Jozef Mǐskuf)

Given a graph G and an assignment L = {L(v) | v ∈ V (G)} of lists of ad-
missible colors for its vertices, we say that G is L-list colorable if the vertices of
G can be properly colored (i.e., adjacent vertices receive distinct colors) so that
each vertex v is colored with a color from L(v). If all list of L have the same
size k, L is called a k-assignment. The minimum integer k such that G is L-list
colorable for every k-assignment L is called the list chromatic number of G (or
the choice number of G) and is denoted by χℓ(G).

First two authors conjectured that for any two graphs G and H there holds
χℓ(G×H) ≤ max{χℓ(G), χℓ(H)}+ 1. We show that the conjecture is true if one
of graphs G or H is a tree. We also prove that for every two graphs G, H there
is

χℓ(G × H) ≤ min{χℓ(G) + col(H), χℓ(H) + col(G)} − 1.

Here col(K) = max{δ(F ) + 1 : F ⊆ K}.

A revival of the Girth Conjecture

Tomáš Kaiser

(joint work with Daniel Král’ and Riste Škrekovski)

The Girth Conjecture of Jaeger and Swart states that every bridgeless cubic
graph of sufficiently large girth is 3-edge-colorable. Although it has turned out
to be false, we show that in a way, its analogue for the circular chromatic index
(in place of the ordinary chromatic index) is true. The result generalizes to a
Vizing-type theorem for the circular edge-coloring: For any ε > 0, the circular
chromatic index of all graphs with maximum degree ∆ and sufficiently large girth
is less than ∆ + ε.
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Homotopy classes of prime

3-manifolds of genus ≤ 2

Ján Karabáš

(joint work with Roman Nedela)

Present paper deals with fundamental groups of 3-manifolds represented by a
certain family S of bipartite 4-edge-coloured graphs. List of fundamental groups
of prime 3-manifolds of genus at most two represented by graphs in S with at
most 42 vertices is produced.
Theorem There are 97 isomorphism classes of fundamental groups of prime 3-

manifolds of genus at most two represented by admissible 6-tuples of complexity

at most 21. One 6-tuple represents a homotopy sphere, 17 represent lens spaces,

71 represent prime 3-manifolds with finite homology groups and 8 represent prime

3-manifolds with infinite homology groups.

Octahedral fulleroids

Frantǐsek Kardoš

(joint work with Stanislav Jendrol’)

We present some properties of polyhedral maps with two types of faces only
(fulleroids) and with full octahedral symmetry. We give sufficient and necessary
condition for existence of such objects depending on type of faces either by find-
ing at least one example to prove existence or proving nonexistence using some
symmetry invariants.

Counting noncrossing graphs

Martin Klazar

A graph G = (V,E), where V ⊂ {1, 2, . . .}, is noncrossing if for no four vertices
a < b < c < d in V we have two (crossing) edges {a, c} and {b, d}. In my talk
I will discuss results and problems connected with enumeration of noncrossing
graphs.
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Small crossing numbers of derived line graphs

Marián Klešč

The crossing number cr(G) of a graph G is the minimum possible number
of edge crossings in a drawing of G in the plane. There are very few classes of
graphs for which the crossing numbers are known exactly.

Let G be a connected graph with vertex set V and edge set E. L(G) is the
line graph of G if there exists one-to-one correspondence between E(G) and
V (L(G)) such that two vertices of L(G) are adjacent if and only if the corre-
sponding edges of G are adjacent. There is the complete characterization of
graphs whose line graphs have crossing number one. For planar graphs there are
known the necessary and sufficient conditions to have a line graph with crossing
number two.

Let us suppose two special graphs derived from line graphs. Concrete, let
L∗(G) be the graph obtained from L(G) by adding a new vertex corresponding
to each cut-vertex of G and the edges joining this new vertex with the vertices
which correspond to the edges of G incident with the considered cut-vertex. Let
L∗∗(G) be the graph obtained from L∗(G) by adding new edges joining the vertices
of L∗(G) correspond to adjacent cut-vertices of the graph G.

It is the purpose of our talk to give the characterization of graphs G for which
L∗(G) and L∗∗(G) are nonplanar and have small crossing number.

Distance independent domination

in iterated line graphs

Martin Knor

(joint work with L’udov́ıt Niepel)

Let k ≥ 1 be an integer and let G = (V,E) be a graph. A set S of vertices
of G is k-independent if the distance between any two vertices of S is at least
k + 1. We denote by ρk(G) the maximum cardinality among all k-independent
sets of G. Number ρk(G) is called the k-packing number of G. Furthermore, S
is defined to be k-dominating set in G if every vertex in V (G) − S is at distance
at most k from some vertex in S. A set S is k-independent dominating if it is
both k-independent and k-dominating. The k-independent dominating number,
ik(G), is the minimum cardinality among all k-independent dominating sets of
G. We find the values ik(G) and ρk(G) for iterated line graphs.
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Decomposition of plane graphs into closed trails

Zuzana Kocková

(joint work with Mirko Horňák)

Let G be a graph and let Lct(G) denote the set of all integers l ≥ 3 such that
there is a closed trail of length l in G. A simple connected even graph G (all
its vertices are of even degree) is said to be arbitrarily decomposable into closed

trails (ADCT) if for any sequence (l1, . . ., lp) such that li ∈ Lct(G), i = 1, . . ., p,
and

∑p
i=1 li = |E(G)|, there exists a sequence (T1, . . ., Tp) of edge-disjoint closed

trails Ti of length li, i = 1, . . ., p. Let G be a simple 4-connected plane graph.
We prove that if G is ADCT, then E(G) contains at most eight edges e such that
both faces incident with e are of degrees at least 4.

Closure for the property

of having a hamiltonian prism

Daniel Král’

(joint work with Ladislav Stacho)

The prism of a graph G is the graph obtained from two disjoint copies of G
by adding edges between the corresponding pairs of vertices. We prove that the
prism of a graph G of order n is hamiltonian if and only if the prism of the graph
Cl 4n/3−4/3(G) is hamiltonian where Cl 4n/3−4/3(G) is the graph obtained from G
by sequential adding edges between non-adjacent vertices whose degree sum is at
least 4n/3 − 4/3. In addition, we show that the threshold 4n/3 − 4/3 cannot be
improved to more than 4n/3 − 5.

Factorizations of complete graphs

into caterpillars of diameter 5

with at least one vertex of degree 2

Michael Kubesa

A tree R such that after deleting all leaves we obtain a path P is called a
caterpillar. The path P is called the spine of the caterpillar R. If the spine
has length 3 and R on 2n vertices contains vertices of degrees r, s, t, 2, where
2 < r, s ≤ n and 2 ≤ t ≤ n, then we say that R is an [r, s, t, 2]-caterpillar of
diameter 5 or a caterpillar of diameter 5 with at least one vertex of degree 2.
We completely characterize [r, s, t, 2]-caterpillars of diameter 5 on 4k + 2 vertices
that factorize K4k+2.
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Exponents of one-vertex maps

and t-balanced maps

L’ubica Ĺı̌sková

A Cayley map is a Cayley graph embedded in an oriented surface in such a
way that the cyclic order of generators is the same at each vertex. An exponent
of a Cayley map is a number e with the property that (loosely speaking) the
Cayley map is isomorphic to its e-fold rotational image. Cayley maps for the
trivial group are important since each Cayley map is a regular lift of a one-vertex
Cayley map.

In our contribution we present results on exponents of one-vertex maps, with
emphasis on maps exhibiting certain types of ’balance’ in the distribution of
generators and their inverses.

Fano colourings of cubic graphs

and the Fulkerson Conjecture

Edita Máčajová

(joint work with Martin Škoviera)

A Fano colouring is a colouring of the edges of a cubic graph by points of
the Fano plane such that the colours of any three mutually adjacent edges form
a line of the Fano plane. It has recently been shown by Holroyd and Škoviera
(J. Combin. Theory Ser. B, to appear) that a cubic graph has a Fano colour-
ing if and only if it is bridgeless. We show that six, and conjecture that four,
lines of the Fano plane are sufficient to colour any bridgeless cubic graph. We
establish connections of our conjecture to other conjectures concerning bridgeless
cubic graphs, in particular to the well-known conjecture of Fulkerson about the
existence of a double covering by 1-factors in every bridgeless cubic graph.

Two variations on Franklin’s theorem

Tomáš Madaras

In 1922, P. Franklin proved that each plane triangulation of minimum degree
5 contains a 5-vertex adjacent to ≤ 6-vertices (that is, a 3-path of the type
(≤ 6, 5,≤ 6) and weight ≤ 17). We show, in addition, that each 3-connected
plane graph of minimum degree 5 contains an induced 3-path of weight ≤ 17 and,
also, a 3-path of the type (≤ 6, 5,≤ 6) such that the size of all neighboring faces
is bounded above by 23; according to these results, we discuss the connections to
light graphs theory and related open problems.
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Additive and hereditary properties

of systems of objects

Peter Mihók

We use the basic elementary notions of category theory. A concrete category
C is a collection of objects and arrows called morphisms. An object in a concrete
category C is a set with structure. We will denote the ground-set of the object A
by V (A). The morphism between two objects is a structure preserving mapping.
Obviously, the morphisms of C have to satisfy the axioms of the category theory.
The natural examples of concrete categories are: Set of sets, FinSet of finite sets,
Graph of graphs, Grp of groups, Poset of partially ordered sets with structure
preserving mappings, called homomorphisms of corresponding structures.

Let C be a concrete category. A simple system of objects of C is an ordered
pair S = (V,E), where E = {A1, A2, . . . , Am} is a finite set of the objects of
C, such that the ground-set V (Ai) of each object Ai ∈ E is a finite set and
V ⊇ ⋃m

i=1 V (Ai).
To generalize the results on generalized colourings of graphs to arbitrary sim-

ple systems of objects we need to define isomorphism of systems. Let S1 =
(V1, E1) and S2 = (V2, E2) be two simple systems of objects of a given concrete
category C. The systems S1 and S2 are said to be isomorphic if there is a pair of
bijection:

φ : V1 ←→ V2; ψ : E1 ←→ E2,

such that if ψ(A1i) = A2j then φ/V (A1i) : V (A1i) ←→ V (A2j) is an isomorphism
of the objects A1i ∈ E1 and A2j ∈ E2 in the category C.

A property of object systems is any class of object systems closed under
isomorphism. In our talk we will consider the structure of additive hereditary
properties of object systems.
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Moore bound and beyond:

A survey of the degree/diameter problem

Mirka Miller

In this talk we will consider extremal graphs, both undirected and directed.
For the optimisation, we deal with three parameters, namely, maximum degree
∆, order (= number of vertices) n and diameter D for undirected graphs; and
maximum out-degree d, order n and diameter k for directed graphs (digraphs).
Fixing any two of the three respective parameters, we wish to find the extreme
values which can be attained in the third parameter.

To date, most research has been done on the problem of maximising the order
of a graph, resp. digraph, the so-called

Degree/diameter problem: Given natural numbers ∆ and D, find the

largest possible number of vertices N(∆, D) in a graph of maximum degree ∆
and diameter at most D.

The statement of the directed version of the problem differs only in that
‘degree’ is replaced by ‘out-degree’.

General upper bounds for the order are obtained by considering the maximum
possible number of vertices in the spanning tree rooted at any vertex of a graph,
resp. digraph; these bounds are called the Moore bounds. Since these bounds have
been shown to be attainable only for certain special graphs and digraphs, much
effort has been devoted to finding better (tighter) upper bounds for the maximum
possible number of vertices, given the other two parameters, thus attacking the
degree/diameter problem ‘from above’. To attack the degree/diameter problem
‘from below’, we are interested in constructions which produce ‘large’ graphs,
resp. digraphs, given the other two parameters.

This talk will give an overview of the current state of this problem and pose
several open problems in the area.
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Enumeration of unrooted maps with given genus

Roman Nedela

(joint work with Alexander Mednykh)

Let Ng(f) denote the number of rooted maps of genus g having f edges. Exact
formula for Ng(f) is known for g = 0 (Tutte 1963), g = 1 (Arques 1987), g = 2, 3
(Bender and Canfield 1991). In the present paper we derive an enumeration
formula for the number Θγ(e) of unrooted maps on an orientable surface Sγ of
given genus γ and given number of edges e. It has a form of a linear combination
∑

i,j ci,jNgj
(fi) of numbers of rooted maps Ngj

(fi) for some gj ≤ γ and fi ≤ e.
The coefficients ci,j are functions of γ and e. Let us consider the quotient Sγ/Zℓ

of Sγ by a cyclic group of automorphisms Zℓ as a two-dimensional orbifold O.
The task to determine ci,j requires to solve the following two subproblems:

(a) to compute the number Epio(Γ, Zℓ) of order preserving epimorphisms from
the fundamental group Γ of the orbifold O = Sγ/Zℓ onto Zℓ,

(b) to calculate the number of rooted maps on the orbifold O which lifts along
the branched covering Sγ → Sγ/Zℓ to maps on Sγ with the given number e of
edges.

The number Epio(Γ, Zℓ) is expressed in terms of classical number theoretical
functions. The other problem is reduced to the standard enumeration problem
to determine the numbers Ng(f) for some g ≤ γ and f ≤ e. It follows that Θγ(e)
can be calculated whenever the numbers Ng(f) are known for g ≤ γ and f ≤ e.
In the end of the paper the above approach is applied do derive the functions
Θγ(e) explicitly for γ ≤ 3. Let us remark that the function Θγ(e) was known
only for γ = 0 (Liskovets 1981). Tables containing the numbers of isomorphism
classes of maps up to 30 edges for genus γ = 1, 2, 3 are produced.

Tracing locally constrained homomorphisms

Daniël Paulusma

(joint work with Jǐŕı Fiala)

We introduce partial orderings on a family of graphs, in which a graph H is
smaller than a graph G, if a locally constrained homomorphism from G to H
exists. Then we are interested in the complexity of finding minimal elements.
We prove that it is NP-complete to find out whether G allows a locally bijective
homomorphism to a smaller graph H. We also show that it is NP-complete to
find out whether G allows a locally surjective homomorphism to a smaller graph
H. For locally injective homomorphisms we give a polynomial time algorithm
that computes a minimal element for instance graph G.
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Extended Petersen graphs

Alexander Rosa

We discuss some properties of yet another class of graphs whose smallest mem-
ber is the famous Petersen graph. These graphs which we call extended Petersen

graphs (not to be confused with generalized Petersen graphs) arise naturally in
the context of a construction of Steiner systems S(2,4,v) with maximal arcs but
seem to be quite interesting on their own. (Some of this is joint work with Peter
Horák.)

Exclusive sum labeling

Joe Ryan

(joint work with Mirka Miller and Moris Tuga)

A graph G(V,E) is called a sum graph if there is an injective labeling called
sum labeling L from V to a set of positive integers S such that xy ∈ E if and
only if L(w) = L(x) + L(y) ∈ S. Then also w is called a working vertex. A sum
labeling L is called exclusive sum labeling with respect to a subgraph H of G if
the vertices of H are labeled in such a way that none of the vertices of H is a
working vertex. Using exclusive sum labelings is (to date) the only known way
of extending summable labelings to a general union of graphs.

We summarize known results on exclusive sum labeling and exclusive sum
number for several classes of graphs. We conclude with a list of open problems.

Stability of graph properties

Zdeněk Ryjáček

A class of graphs C is said to be stable under a closure operation cl if G ∈ C
implies cl(G) ∈ C. Let C be a stable class and P a property. We say that P
is stable in C under cl, if, for any G ∈ C, G has P if and only if cl(G) has P .
Similarly, a graph invariant π is stable in C under cl if π(G) = π(cl(G)) for any
G ∈ C. Proving a stability result is usually the first step in applying closure
techniques to a specific problem.

We survey known results on stability of graph properties and invariants under
the closure operations based on local completions and on subgraph contractions.
Applications of these results and some open questions will be discussed.

15



Numbers of edges in supermagic graphs

Andrea Semaničová

(joint work with Jaroslav Ivančo and Svetlana Drajnová)

A graph is called supermagic if it admits a labelling of the edges by pairwise
different consecutive integers such that the sum of the labels of the edges incident
with a vertex is independent of the particular vertex. In this talk we will deal
with connection between number of vertices and number of edges in supermagic
graphs. Let M(n), (m(n)) denote the maximal (minimal) number of edges in a

supermagic graph of order n. We will prove that there exists positive integer ε,
m(n) < ε < M(n) that every graph of order n and size ε is not supermagic. We
will determine M(n) and we will establish some bounds for m(n).

Non-intersecting longest paths

in strongly connected oriented graphs

Gabriel Semanǐsin

(joint work with Susan van Aardt)

One of the classical results of graph theory states that every two longest paths
of a connected non-oriented graph have a vertex in common. The correspond-
ing problem for three longest paths of an ordinary non-oriented graph is still
unsolved. This question arose for the oriented case while studying the Directed
Path Partition Conjecture. In general, the problem is simple, because one can
easily construct an oriented graph having two non-intersecting longest paths.

But the situation is more interesting if we require the oriented graph to be
strongly connected. We prove that for k ≤ 7 there is no strongly connected
oriented graph with non-intersecting longest paths of order k. For k ≥ 8 we
provide a construction of an infinite class of graphs with approximately

√
k non-

intersecting longest paths.

Maps of p -gons with a ring of q -gons

Roman Soták

(joint work with Róbert Hajduk and Tomáš Madaras)

Deza and Grishukin studied 3-valent maps Mn(p, q) consisting of a ring of n
q-gons whose inner and outer domains are filled by p-gons. They described the
conditions for n, p, q under which such map may exist and presented several
infinite families of them. The open cases are, in particular, Mn(7, 5) with n > 28,
Mn(5, 7) with n ∈ {17, 18, 19} and Mn(5, q) for q ≥ 8. We extend their results
by presenting infinite families of new maps Mn(7, 5) and Mn(5, q).
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Graph traversal

Ladislav Stacho

Graph traversal is a fundamental problem in graph algorithms: Given a start-
ing vertex, can we systematically traverse the entire graph reaching every vertex
reachable from the starting one? Many elementary graph algorithms involve mak-
ing traversal of the graph (e.g., connected component, tree and cycle detection,
graph colouring) in order to update their knowledge as they visit each edge and
vertex. The problem is easy when we have enough memory (to remember the
vertices that have been already visited), but becomes complicated when we have
only constant memory (so, we cannot remember all the visited vertices). There
have been several studies on traversal in the literature.

In the first part of my talk, I will survey known results. In the second part,
I will concentrate on traversal of planar graphs and will report on some recent
results.

On some new types and kinds

of polyhedra non-inscribability

Sergej Ševec

Types of polyhedra are studied that are non-inscribable in the spherical shell.
A general sufficient condition is formulated. Employing it, a large class of poly-
hedra is proved to be spherical-shell non-inscribable in addition to those non-
inscribable in the sphere. Several illustrations of applying the sufficient condition
proved (as well as the proof techniques used) are presented on the examples of
spherical-shell non-inscribability calculation for particular polyhedra types. In
the second part of the paper, the relationship between (non-) inscribability in
the spherical shell and (non-) inscribability in the sphere is focused and traced
more closely. In consequence, a new kind of (non-) inscribability is defined, that
interpolates these two ones.
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One-vertex quotient genus

of covalence sequences of Cayley maps

Jana Šiagiová

We consider covalence sequences of infinite, one-ended, 3-connected, planar
Cayley maps. The one-vertex quotient genus of such a covalence sequence is the
smallest genus of an orientable surface containing a one-vertex quotient of the
corresponding Cayley map. In our contribution we present various results related
to one-vertex quotient genera of covalence sequences.

Vertex-transitive maps

Jozef Širáň

Which vertex-transitive graphs can be embedded in surfaces in such a way
that the embedding is vertex-transitive as well? Obviously, the automorphism
group of such an embedding must be a subgroup of the full automorphism of
the graph. Therefore it is natural to expect an answer in terms of existence of a
suitable group of automorphisms of the graph. The aim of this talk is to make
the answer precise, including a discussion on consequences and related topics.

Layout volumes of hypercubes

L’ubomı́r Török

(joint work with Imrich Vrt’o)

We study 3-dimensional layouts of hypercubes in a 1-active layer and general
model. The problem can be understood as a graph drawing problem in 3D space
and was addressed at Graph Drawing 2003. In the 1-active layer model a vertex
of degree d is represented by a square of side d and is placed in the bottom
layer of the 3-dimensional grid. In the general model a vertex of degree d is
represented as a cube of side d and can lie anywhere in the grid. Edges are drawn
as nonoverlaping paths in the grid. The aim is to minimize the the occupied
volume.

For both models we prove general lower bounds which relate volumes of layouts
to a graph parameter cutwidth. Then we propose tight upper bounds on volumes
of layouts of N -vertex hypercubes. Especially we have

VOL1−AL(Qlog N) = 2
3
N

3

2 log N + O(N
3

2 ), for even log N and

VOL(Qlog N) = 26
1

2

9
N

3

2 + O(N
4

3 log N), for log N divisible by 3.

The 1-active layer layout can be easily extended to a 2-active layer (bottom
and top) layout which improves a result presented at Graph Drawing 2003.
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On vertices with at most one neighbour

of large degree in planar graphs

Milan Tuhársky

(joint work with Stanislav Jendrol’ and Tomáš Madaras)

It is well known that every planar graph G contains a vertex of degree at most
5. The edge-weight of an edge e, denoted by ew(e), is defined as the sum of the
degrees of the vertices incident with the edge e. Then the edge-weight of graph G
is defined by ew(G) = min{ew(e), e ∈ E(G)}. In this talk we will deal with the
family of graphs with the edge-weight ew(G) ≥ 9. We will prove that every 3-
connected planar graph with ew(G) ≥ 9 contains a vertex v of degree d ∈ {3, 4, 5}
such that at most one of the neighbour of the vertex v has unbounded degree.

On some packing and decomposition

problems in transitive tournaments

Mariusz Woźniak

Denote by TTn the transitive tournament on order n. In 1999 Sali and Simonyi
proved that any self-complementary graph H on order n can be oriented in such
a way, that the graph H ⊕ σ(H) is isomorphic to the graph TTn (σ denotes
the self-complementary permutation). A short proof of this fact was given by
Gyárfás.

Since there are many results concerning the relationship between packing and
self-complementary graphs, the above mentioned result suggests that one could
get some non-trivial results by studying the packing problems in transitive tour-
naments.

Probably, the first result dealing with packing in transitive tournaments is the
following theorem:
Theorem Let TTn be a transitive tournament on n vertices. Let

−→
G be a directed

acyclic graph of order n such that |E(
−→
G)| ≤ 3(n−1)

4
. Then

−→
G is 2-packable into

TTn i.e. there exist two arc-disjoint subgraphs of TTn, both isomorphic to G.

We discuss some other results and problems concerning the packing and the
decomposition of graphs in transitive tournaments.
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Some results on domination in graphs

Bohdan Zelinka

A mapping f of the vertex set V of a graph G into the set consisting of
two numbers 1 and −1 with the property that the sum of f over the closed
neighbourhood of any vertex of G is at least 1 is a signed dominating function
on G. A family of signed dominating functions with the property that the sum
of their values in any vertex x of G is at lost 1 is a signed domatic family on
G. The maximum number of functions in such a family is the signed domatic
number ds(G) of G. The signed domatic number is always an odd integer. For
trees and wheels it is equal to 1.For a circuit it is 3, if the length of the circuit is
divisible by 3, otherwise it is 1. Let G be the complete graph with n vertices.

ds(G) =











n, for n odd,
p, for n = 2p and p odd,
p − 1, for n = 2p and p even.

If a mapping f of V into the set consisting of 1 and −1 has the property that
its sum over the closed neighbourhood of v is at least 1 for at least k vertices v
of G, then f is a k-subdomination function on G. Its sum over V is its weight
w(f). The minimum of w(f) over all k-subdominating functions f is the k-
subdomination number of G. J. H. Hattingh conjectured that for k between n/2
and n this number is at most 2k − n. This may be disproved by the graph of the
three-dimensional cube and k = 5.

References

[1] Volkmann L. - Zelinka B.: Signed domatic number of a graph. Discrete Math.
(submitted).
[2] Zelinka B.: On a problem concerning k-subdomination numbers of graphs.
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Martin.Baca@tuke.sk

Rostislav Caha
Institute for Theoretical Computer Science, Charles University, Prague
Rostislav.Caha@mff.cuni.cz

Matthias Dehmer
Department of Computer Science, Technical University, Darmstadt, Germany
dehmer@dekanat.informatik.tu-darmstadt.de

Emı́lia Draženská
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Jǐŕı Fiala
Department of Applied Mathematics, Charles University, Prague
fiala@kam.mff.cuni.cz

Dalibor Fronček
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Zdeněk Ryjáček
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Institute of Mathematics, P. J. Šafárik University, Košice
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Brü-

sta-

lyó-
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kély-

daar-

mul-

lo

!
to

ex-

Ent-

nie-

ség

die

taj

ne-

��!
má-
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Kö-
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vä-

ty-

h́ıd-

hier-

ge-

di

! .
to

such

ter

le

dal

die

lon

svo-

(!
mos-

ve-

Kö-
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1. Přes Pregolu sedm most̊u stálo,
na svou dobu nebylo to málo,
královečt́ı radńı hrdi byli,
že si tyto mosty postavili.

2. V podvečeru k řece davy spěj́ı,
po mostech se sem tam procházej́ı,
otázka jim jedna vrtá hlavou,
jak by měli zvolit cestu pravou.

3. Přes most každý jednou chtěj́ı j́ıti,
pak se domů zase navrátiti;
nějak jim to ale nevycháźı,
jeden most vždy přebývá či scháźı.

Ref. Euler̊uv graf všechny stupně sudé
má–ta věta vždycky platit bude;
nejstarš́ı to ze všech vět
o grafech, jež poznal svět.

4. Vzpomněli si, muž že v městě žije,
nad jiné jenž velmi učený je,
měřictv́ı i počt̊u mistr pravý;
muśı vzej́ıt rada z jeho hlavy.

5. Mistr Euler smutně hlavou krout́ı:
“Jednou cestou nelze obsáhnouti
most̊u všech, jak panstvo sobě žádá.
Nepomůže tady žádná rada.

Ref. Euler̊uv graf . . .

6. Zákony má přece svoje věda,
proti nim se poč́ıti nic nedá.
Mosty ani vodńı živel dravý
do cesty se vědě nepostav́ı.”

7. Když se vojna přes Pregolu hnala,
jej́ı bouře mosty rozmetala.
Eulerovo jméno u té řeky
přežilo však mnohé lidské věky.

Ref. Euler̊uv graf . . .

8. Eulerovo jméno stále žije
dokud žije graf̊u teorie.
A čim v́ıce ub́ıhaj́ı léta,
t́ım v́ıc tato teorie vzkvétá.

9. Kolegové, naplňme své č́ı̌se,
k př́ıpitku je zvedněm všichni výše,
at se nám tu stále v́ıce vzmáhá
teorie graf̊u naše drahá.

1. Seven bridges spanned the River Pregel,
Many more than might have been expected;
Königsberg’s wise leaders were delighted
To have built such very splendid structures.

2. Crowds each ev’ning surged towards the river,
People walked bemused across the bridges,
Pondering a simple-sounding challenge
Which defeated them and left them puzzled.

3. Here’s the problem; see if you can solve it!
Try it out at home an scraps of paper!
Starting out and ending at the same spot,
You must cross each bridge just once each ev’ning.

Ref. Eulerian graphs all have this restriction:
The degree of any point is even.
That’s the oldest graph result
That mankind has ever known.

4. All the folk in Königsberg were frantic!
All their efforts ended up in failure!
Happily, a learn-ed math’matician
Had his house right there within the city.

5. Euler’s mind was equal to the problem:
“Ah”, he said, “You’re bound to be disheartened.
Crossing each bridge only once per outing
Can’t be done, I truly do assure you.”

Ref. Eulerian graphs . . .

6. Laws of Nature never can be altered,
We can’d change them, even if we wish to.
Nor can flooded rivers or great bridges
Interfere with scientific progress.

7. War brought strife and ruin to the Pregel;
Bombs destroyed those seven splendid bridges.
Euler’s name and fame will, notwithstanding,
Be recalled with Königsberg’s for ever.

Ref. Eulerian graphs . . .

8. Thanks to Euler, Graph Th�eory is thriving.
Year by year it flourishes and blossoms,
Fertilising much of mathematics
And so rich in all its applications.

9. Colleagues, let us fill up all our glasses!
Colleagues, let us raise them now to toast the
Greatness and the everlasting glory
Of our Graph Th�eory, which we love dearly!



1. Übern Pregel führen sieben Brücken,
bringen alle Herzen zum Entzücken.
Lobgesang erklingt in allen Gassen,
die Stadtväter Königsbergs erblassen.

2. Jeden Abend ström’ die Leut’ zum Flusse,
enthusiastisch wimmeln sie voll Muße
hin und her und quer und ’rum im Kreise,
um zu lösen ein Problem ganz weise.

3. Und nun hört die Frage aller Fragen.
Sag, was würdest Du uns dazu sagen!
Gibt’s ’nen Weg, der über jede Brücke
einmal führt genau und dann zurücke?

Ref. Eulerscher Graph, Dir ist stets zu eigen,
daß sich die Knoten grad-geradig zeigen.
Es hat dieser erste Satz
im Buch der Graphen seinen Platz.

4. Wer begann nach einem Weg zu suchen,
fand kein Ende, fing bald an zu fluchen.
Einer, der in diesem Städtchen wohnte,
brachte die Idee, die sich dann lohnte.

5. Meister Euler fiel sogleich der Groschen:
“Volk, zerrennt Euch doch nicht die Galoschen!
Solch ein Brückengang ist niemals machbar,
der Beweis hier zeige es Euch ganz klar.”

Ref. Eulerscher Graph, . . .

6. Der Natur Gesetze sind gegeben,
es umgeht sie keiner Macht Bestreben.
Weder Brücken noch des Wassers Fließen
könn’ den Weg der Wissenschaft verdrießen.

7. Mit dem Kriege folgt dem Fluß Verderben,
alle Pracht der Brücken schlug in Scherben.
Eulers Ruf und Name wird auf Zeiten
die Geschichte Königsbergs begleiten.

Ref. Eulerscher Graph, . . .

8. Dank Dir, Euler, blühend hat mit Wonnen
Graphenwissenschaft den Start genommen.
Vielfältigst nutzt man sie mit Fanatik,
sie bereichert unsre Mathematik.

9. Freunde, laßt uns heut’ vom Weine leben,
Gläser füllen, klingen und erheben.
Graphentheorie, oh, schätzt sie alle,
dreimal hoch leb’ sie, in jedem Falle!

1. Na Pregole siedem mostów sta lo,
w tamtych czasach by lo to niema lo.
W Królewcu siȩ radni radowali,
że aż tyle mostów zbudowali.

2. Jak co wieczór t lumy wyruszy ly,
bo nad rzeka̧ spacer bardzo mi ly.
Wcia̧ż myśl jedna im zaprza̧ta g lowȩ,
jak tu wybra c tȩ w laściwa̧ drogȩ.

3. Przez most każdy raz przej́sć nie wracaja̧c,
znów siȩ w domu znaleźć nie zbaczaja̧c.
Jakoś im to wcale nie wychodzi,
most zostaje lub brakuje w drodze.

Ref. Eulera graf, to fakt oczywisty,
wszystkie wȩz ly sa̧ stopni parzystych.
Doskonale znana jest
o grafach to pierwsza z tez.

4. Aż nareszcie przypomnieli sobie
o cz lowieku żyja̧cym w ich grodzie,
Mistrzu geometrii i rachunków,
On podpowie w którym ísć kierunku.

5. Ale Euler smutnie krȩci g lowa̧,
bo odpowiedź na to ma gotowa̧:
“Jedna ścieżka nie wystarczy, aby
pokryć mosty - nie ma na to rady.”

Ref. Eulera graf . . .

6. Nie pomoga̧ tutaj dobre chȩci,
nic w nauce nie da siȩ pokrȩcić.
Mostów nowych nikt nie wybuduje,
wodny żywio l tym co sa̧ – daruje.

7. Kiedy wojna przez Prego lȩ gna la,
mosty wszystkie z ziemia̧ wyrówna la.
Jednak imiȩ Mistrza nad ta̧ rzeka̧
przeży lo już wiele d lugich wieków.

Ref. Eulera graf . . .

8. Nowej wiedzy Euler da l podstawy,
przez co zyska l ca le wieki s lawy.
My śladami Mistrza poda̧żamy
i naukȩ Jego rozwijamy.

9. Wiȩc, Koledzy, na koniec powsta/nmy.
Wznosza̧c toast g lośno tak śpiewajmy:
Niechaj żyje nam Teoria Grafów,
obwieszczajmy ja̧ ca lemu światu.



1. Állott hét h́ıd a Pregel folyóján,
akkortájt ez nem csekélység volt ám;
Königsbergben büszke sok tanácsos,
ennyi h́ıddal hogy ékes a város.

2. Alkonyatkor kavarog a népség,
és fejükben hánytorog a kétség:
hogy’ lehetne jó utat találni,
minden h́ıdon egyszer általjárni.

3. Mind a hét h́ıd egyszer essen útba,
séta végén otthon lenni újra;
de a jó út valahol hibázik,
egy h́ıd mindig fölös vagy hiányzik.

Ref. Euleri gráf: minden foka páros,
és a tétel mindörökre áll most;
gráfokról ez álĺıtás
a világnak ősforrás.

4. Él egy ember, gondoljunk csak rája,
itt minálunk, nincs tudásban párja;
úgy érti a számolást és mérést,
hogy elébe kell tárni a kérdést.

5. Euler mester fejét búsan rázza:
“Oly talány ez, nincsen megoldása;
nincs oly út, mint uraságtok kérik,
amely minden hidat egyszer érint.

Ref. Euleri gráf: . . .

6. Érckemény a tudományos tétel,
mit sem kezdhet ellene a kétely;
árad a v́ız, szilárd a h́ıd rajta,
még erősb a tudomány hatalma.”

7. Háború jött a Pregel folyóra,
minden h́ıdját ı́zzé-porrá szórta;
nemzedékek hosszú során fénylik
Euler és a folyó neve végig.

Ref. Euleri gráf: . . .

8. Euler h́ıre nem ér addig véget,
mı́g csak élni fog a gráfelmélet;
s egyik évre amint jön a másik,
az elmélet mind jobban virágzik.

9. Jó kollégák, töltsük meg a kelyhet,
áldomásra mind emeljük feljebb:
nekünk a gráfelmélet oly drága,
hadd teremjen sok-sok szép virága!

1. Oor die Pregel was daar sewe brûe
dit was nie so min vir daardie tyd nie;
Königsberg se stadsvaders was so trots
dat hul hierdie brûe kon gebou het.

2. Teen die aand dan wandel al die mense
oor die brûe het hul loop en wonder,
oor ’n vraag wat steeds by hul bly spook het
oor die roete waar hul langs geloop het.

3. Elke brug moet net een maal gebruik word
en die roete moet dan weer tuis eindig;
maar dit wou maar net nooit reg uitwerk nie
want die brûe was nie reg geplaas nie.

Ref. Die stelling sê: Eulerse grafieke
het by al die punte ewe grade.
Dis die oudste resultaat
oor grafieke wat ons ken.

4. Hul onthou toe van ’n man wat daar woon
met geleerdheid, meer as ander mense –
Meester van die meetkunde en nog meer –
hy moes oor die groot probleem nou raad gee.

5. Meester Euler moes hul toe dit meedeel:
“Dis onmoontlik in ’n enkel roete
al die brûe een maal oor te wandel;
daar’s geen raad wat hiervoor sal kan help nie.”

Ref. Die stelling sê: . . .

6. Die natuur het mos sy eie wette
dis nie moontlik om hul teen te gaan nie,
nóg die brûe nóg die wilde waters
kan die wetenskap se gang versteur nie.

7. Toe die oorlog oorspoel daar na Pregel
is die brûe in die slag vernietig
maar die naam van Euler sal bly voortleef
vir nog baie jare by die Pregel.

Ref. Die stelling sê: . . .

8. Met die stelling word sy naam verewig
soos Grafiekt�eorie sal dit bly lewe
jaar na jaar kom nuwe resultate
wat die groei en bloei daarvan bevestig.

9. Vriende kom ons vul nou al ons glase
vriende kom ons drink nou hierdie heildronk
en ons hoop vir groei en sterkte voortaan
vir Grafiekt�eorie wat ons so lief het!



1. Trans Pregolo pontoj sep majestis –
– en tiama tempo multaj estis –
la kenigsberganoj ĝojon ĝuis,
ke Pregelon ili prikonstruis.

2. Ĉiutage antaŭ la vespero
la urbanoj venas al rivero.
Ĉiam ilin ĝenas la problemo,
kia estu la promen-sistemo.

3. Ili volas pontojn sep transiri,
poste hejmen siajn paŝojn stiri
ofte ili fari tion provas,
sed neniam ili solvon trovas.

Ref. En Euler-a grafo estas para
ĉiu grad‘ – jen fakto senerara.
Jen la plej malnova tez‘,
sed validas ĝi sen ĉes’.

4. Ili scias, ke en certa domo
vivas iu scioplena homo;
vera majstro de matematiko:
helpos de la sciencist’ logiko.

5. Majstro Euler sian kapon skuas:
”La matematiko nin instruas:
tia voj’ sep pontojn ne entenas.
Jen – rezulton do ni ne divenas.

Ref. En Euler-a . . .

6. Siajn leĝojn havas la scienco,
nei ilin estas ja sen senco.
Pontoj eĉ inundoj de l’rivero
ne haltigos marŝon de la vero.”

7. La milito Kenigsbergon skuis,
ĝiaj ŝtormoj pontojn sep detruis.
Sed la nomo Euler ĉe l’ rivero
vivas dum longega homa ero.

Ref. En Euler-a . . .

8. Ĉiam vivu tiu ci genio,
dum ekzistos grafoteorio.
Kvankam tre rapide tempo fluas,
tiu teorio evoluas.

9. Gekolegoj, glasojn ni plenigu,
por la tosto ĉiujn ni instigu;
vivu en estonta historio
nia kara grafoteorio.

1. Qerez Pregel~ s�m most�v sto�lo,
�k na to$i qas ce bulo nemalo.
Pogl�dali gordo m�sta radc�
na plodi svöıh debat � prac�.

2. Ko�en veq�r �rbi $ixli do r�qki,
po mostah broditi zav�di sl�qno,
ta ne mali spoko� od togo,
bo xukali pravil~nu dorogu:

3. vs� mosti t� po razu odnomu
pere$iti $i vernutis� dodomu.
Ta zadaqka c� ne p�dda
t~s�:
to to$i dv�q�, to �ki$is~ minet~s�.

Pr. E$ilera graf ma
 sutn�st~ garnu,
wo vs� toqki ma�t~ stup�n~ parnu.
Ce – na$iperxi$i rezul~tat,
v knigu graf�v c�nni$i vklad.

4. Ta zgadali, wo m�� nimi qemno
pro�iva
 slavni$i mu� uqeni$i,
v�n rahu
 $i m�r�
 vse rado,
dast~ v�n toqno c�$i problem� radu.

5. Ale E$iler krutit~ golovo�:
“Ne pro$iti vse hodko� odno�,
�k vi ce sob� zaplanuvali,
hoq bi vi rokami tam blukali.”

Pr. E$ilera graf . . .

6. Teoremu c� v�e ne zm�niti,
ce – zakon�v nepohitni$i zlitok.
N� potopi, n� velik� mósti
ne zupin�t~ naukovi$i postup.

7. �k v�$ina zla qerez Pregel~ gnala,
to mosti z zemle� por�vn�la.
Im’� � E$ilera ponad r�ko�
ne pohovane v�k�v �rbo�.

Pr. E$ilera graf . . .

8. Novu galuz~, E$iler, rozpoqav ti,
wo ı̈$i sud�eno cv�sti $i zrostati.
Koristu�t~ �z nauki graf�v
matematiki us�h paraf�$i.

9. To �, kolegi, p�d�$ima$imo qax�,
vip’
m dru�no za zdobutki naxi:
grafteor�
, r�sn�$i trivalo,
l�bimo tebe $i p’
mo vo slavu!



Programme of the Conference

Sunday

14:00 - 22:00 Registration

18:00 - 22:00 Dinner

Monday

07:30 - 08:30 Breakfast

08:40 - 08:45 Opening

08:45 - 09:35 Pavol HELL Proper interval graphs and bigraphs

09:40 - 10:00 Martin BAČA Edge-antimagic total labelings of
graphs

10:05 - 10:25 Joe RYAN Exclusive sum labeling

10:30 - 11:00 Coffee break

11:00 - 11:20 Roman NEDELA Enumeration of unrooted maps with
given genus

11:25 - 11:45 Andrea SEMANIČOVÁ Numbers of edges in supermagic graphs

11:50 - 12:10 L’ubica LÍŠKOVÁ Exponents of one-vertex maps and
t-balanced maps

12:15 - 12:35 Michael KUBESA Factorizations of complete graphs into
caterpillars of diameter 5 with at least
one vertex of degree 2

12:40 - 13:20 Lunch

15:00 - 15:50 Mirka MILLER Moore bound and beyond: A survey of
the degree/diameter problem

15:55 - 16:15 Pavel HÍC Randomly 2Cn graphs

16:20 - 16:50 Coffee break

16:50 - 17:10 Mariusz WOŹNIAK On some packing and decomposition
problems in transitive tournaments

17:15 - 17:35 Zuzana KOCKOVÁ Decomposition of plane graphs into
closed trails

17:40 - 18:00 Sergej ŠEVEC On some new types and kinds of poly-
hedra non-inscribability

18:00 - 18:30 Dinner

20:00 - Welcome party
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Tuesday

07:30 - 08:30 Breakfast

08:45 - 09:35 Geňa HAHN Cops, robbers and graphs

09:40 - 10:00 Mirko HORŇÁK t.b.a.

10:05 - 10:25 Jiř́ı FIALA Subchromatic index - properties and
complexity

10:30 - 11:00 Coffee break

11:00 - 11:20 Robert JAJCAY Vertex-transitive graphs: A survey of
methods and problems

11:25 - 11:45 Tomáš KAISER A revival of the Girth Conjecture

11:50 - 12:10 Edita MÁČAJOVÁ Fano colourings of cubic graphs and the
Fulkerson Conjecture

12:15 - 12:35 Stanislav JENDROL’ On list chromatic number of cartesian
product of two graphs

12:40 - 13:20 Lunch

14:00 - 14:50 Zdeněk RYJÁČEK Stability of graph properties

14:55 - 15:15 Daniël PAULUSMA Tracing locally constrained homomor-
phisms

15:20 - 15:50 Coffee break

15:50 - 16:10 Marián KLEŠČ Small crossing numbers of derived line
graphs

16:15 - 16:35 Emı́lia DRAŽENSKÁ The crossing number of products of
6-vertex trees with cycles

17:30 - 19:00 Walking

19:00 - Dinner at a fireplace

Wednesday

07:30 - 08:30 Breakfast

08:45 - 09:35 Alexander ROSA Extended Petersen graphs

09:40 - 10:00 Martin KLAZAR Counting noncrossing graphs

10:05 - 10:25 Coffee break

10:25 - 11:45 Bohdan ZELINKA Some results on domination in graphs

10:50 - 11:10 Martin KNOR Distance independent domination in
iterated line graphs

11:30 - 18:00 Trip

18:00 - 18:30 Dinner
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Thursday

07:30 - 08:30 Breakfast

08:45 - 09:35 Ladislav STACHO Graph traversal

09:40 - 10:00 Tomáš MADARAS Two variations on Franklin’s theorem

10:05 - 10:25 Igor FABRICI Unavoidable configurations in outerpla-
nar graphs

10:30 - 11:00 Coffee break

11:00 - 11:20 ZdzisÃlaw SKUPIEŃ t.b.a.

11:25 - 11:45 Rostislav CAHA On antipodes in hypercubes

11:50 - 12:10 Pavel HRNČIAR Minimal eccentric sequences with two
values

12:15 - 12:35 Gabriel SEMANIŠIN Non-intersecting longest paths in
strongly connected oriented graphs

12:40 - 13:20 Lunch

15:00 - 15:50 Jozef ŠIRÁŇ Vertex-transitive maps

15:55 - 16:15 Jana ŠIAGIOVÁ One-vertex quotient genus of covalence
sequences of Cayley maps

16:20 - 16:50 Coffee break

16:50 - 17:10 Mária IPOLYIOVÁ An upper bound on the size of the
smallest trivalent regular maps of prime
face length and of large planar width

17:15 - 17:35 L’ubomı́r TÖRÖK Layout volumes of hypercubes

17:40 - 18:00 Marcel ABAS Cayley maps on surfaces with
boundary

19:00 - Farewell party

Friday

07:30 - 08:30 Breakfast

08:45 - 09:35 Dalibor FRONČEK Incomplete and non-compact round
robin tournaments

09:40 - 10:00 Daniel KRÁL’ Closure for the property of having
a hamiltonian prism

10:05 - 10:25 Roman SOTÁK Maps of p-gons with a ring of q-gons

10:30 - 11:00 Coffee break

11:00 - 11:20 Peter MIHÓK Additive and hereditary properties of
systems of objects

11:25 - 11:45 Milan TUHÁRSKY On vertices with at most one neighbour
of large degree in planar graphs

11:50 - 12:10 Frantǐsek KARDOŠ Octahedral fulleroids

12:10 - 12:30 Lunch
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Plan of Vyšné Ružbachy
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